
Software Design & Architecture

Introduction to Software Architecture

Pengyu Nie

Acknowledgements: slides adapted from previous versions by Mei Nagappan and Shane McIntosh, which are adapted from previous versions by Zhen Ming
Jiang, Ahmed E. Hassan, Reid Holmes.

Agenda

• Software development lifecycle

• Software architecture: what and why

• Exercise: sketching software architecture

• Review P0 and P1 requirements

2

Software Development Lifecycle (SDLC) Phases

3

Requirements
•users, stakeholders
•functional & non-functional

Architecture
•break down problem space
•create subsystems and their communication

Design
•further decompose each subsystem
•create components and their communication (in subsystem)

Implementation
•code

Quality Assurance
•test software against requirements
•validate if software meets customer expectations

Deployment

Planning
the waterfall model

CS 445

CS 447

many other
programming courses

focus of this course
Problems/changes

in early phases are
more costly to fix!

Agile Software Development

4

Requirements
•users, stakeholders
•functional & non-functional

Architecture
•break down problem space
•create subsystems and their communication

Design
•further decompose each subsystem
•create components and their communication (in subsystem)

Implementation
•code

Quality Assurance
•test software against requirements
•validate if software meets customer expectations

Deployment

Planning
the waterfall model

CS 445

CS 447

many other
programming courses

focus of this course

iterative

design
prototypes

demo
prototypes

Read more about SDLC and Agile in CS 346 notes: https://student.cs.uwaterloo.ca/~cs346/1251/course-notes/project-management/agile.html

https://student.cs.uwaterloo.ca/~cs346/1251/course-notes/project-management/agile.html

What is Architecture?

“both the process and the product of planning, designing, and
constructing buildings or any other structures”

-- Encyclopedia Britannica

5

The Three Original Principles

• Durability: a structure should stand up robustly and remain in
good condition

• Utility: a structure should be suitable for the purposes for which it
is used

• Beauty: a structure should be aesthetically pleasing

-- De Architectura by Roman architect Vitruvius (1st century AD)

6

Why do we Need Architecture?

7

Why do we Need Architecture? (Software ver.)

8

The Architect

• Distinctive role

• Broadly trained
• Requirements, design, implementation, use

• Has a keen sense of aesthetics

• Strong understanding of the domain

• What do these domain skills look like for buildings? For software?

9

Benefits of Architect

• What common benefits can software gain from an architect, that
a building also gets from its architect?
• Intellectual control and conceptual integrity
• Experience
• Management

10

Analogy to Building Architecture

• Architects focus on clients’ needs

• Iteration on a set of blueprints, refining when necessary
• Intermediate plans, mockups, prototypes

• Created by specialists, not end users

• Structure induces properties (e.g., in a castle)

• Architects require broad training
• Leverage lessons from past generations

11

Differences from Building Architecture

• What are the key differences between software architecture and
architecture for buildings?
• Age
• Material
• Delivery machanisms

12

Shortcomings of Analogy

• We have much more experience with buildings

• Buildings are physical artifacts; software is intangible

• Expertise in the software industry is less clearly differentiated
(e.g., no “exception specialists”)

• Anyone can write software

• Deployment and operations are very different

• Changes are expected

13

Architecture

• Architecture is:
• All about communication
• What “parts” are there
• How do the “parts” fit together

• Architecture is not:
• About development
• About algorithms
• About data structures

14

What is Software Architecture?

• The conceptual fabric that defines a system
• All architecture is design but not all design is architecture

• Architectures capture three primary dimensions:
• Structure
• Communication
• Non-functional requirements

15

What is Software Architecture? (Formal ver.)

• “Architecture is the fundamental organization of a system,
embodied in its [subsystems], their relationships to each other
and the environment, and the principles govering its design and
evolution”

-- ANSI/IEEE 1471-200

16

Logical Web Architecture

17

index.html

cs846.html

cs446.html

p0.html

p1.html
overview.html

Physical Web Architecture

18

Exercise: Architectural Sketching

• Have your favourite draing tool launched
• Microsoft whiteboard https://whiteboard.office.com
• draw.io https://app.diagrams.net/
• Mermaid (in plain text) https://mermaid.live/edit

• Target application: web browser (e.g., Chrome, Firefox)

• Task 1: List as many subsystems as you can think of.
Use boxes to denote subsystems.

19

https://whiteboard.office.com/
https://app.diagrams.net/
https://mermaid.live/edit

Instructor’s list of subsystems

• UI layer (to support multiple platforms)

• HTML/DOM engine

• CSS processor

• JS engine (to process client-side scripts)

• Networking (to enable “talking” to web servers)

• Bookmark manager

• Secure persistence (e.g., passwords, credit cards)

• History database

• Plugin manager

20

Exercise: Architectural Sketching (cont.)

• Continue the drawing from task 1

• Task 2: Connect subsystems that need to communicate.
Use directed arrows to indicate control/data flow.

21

The Anatomy of Web Browsers

22
http://plg.math.uwaterloo.ca/~migod/papers/2007/emse-browserRefArch.pdf

Why is Software Architecture Important

• “Software architecture is the set of design decisions which, if
made incorrectly, may cause your project to be cancelled.”

-- Eoin Woods

• Architecture focuses on those aspects of a system that would be
difficult to change once the system is built

23

Why is Software Architecture Difficult?

• “The life of a software architect is a long (and sometimes painful)
succession of suboptimal decisions made partly in the dark.”

-- Philippe Krutchen

• Young field

• High user expectations

• Software cannot execute independently

24

Specific Difficulties

• Complexity: grows non-linearly with program size

• Conformity: system is dependent on its environment

• Changeability: perception that software is easily modified

• Intangibility: not constrained by physical laws

25

Attacks on Difficulties

• High-level languages

• Development tools & environments

• Component-based reuse

• Development strategies
• Incremental, evoluntionary, spiral models

• Emphasis on architecture and design
• Design-centric approach taken from outset

26

Agenda

• Software development lifecycle

• Software architecture: what and why

• Exercise: sketching software architecture

• Review P0 and P1 requirements
• https://pengyunie.github.io/cs446-1251/docs/project/p0/
• https://pengyunie.github.io/cs446-1251/docs/project/p1/

27

https://pengyunie.github.io/cs446-1251/docs/project/p0/
https://pengyunie.github.io/cs446-1251/docs/project/p1/

	Slide 1: Software Design & Architecture Introduction to Software Architecture
	Slide 2: Agenda
	Slide 3: Software Development Lifecycle (SDLC) Phases
	Slide 4: Agile Software Development
	Slide 5: What is Architecture?
	Slide 6: The Three Original Principles
	Slide 7: Why do we Need Architecture?
	Slide 8: Why do we Need Architecture? (Software ver.)
	Slide 9: The Architect
	Slide 10: Benefits of Architect
	Slide 11: Analogy to Building Architecture
	Slide 12: Differences from Building Architecture
	Slide 13: Shortcomings of Analogy
	Slide 14: Architecture
	Slide 15: What is Software Architecture?
	Slide 16: What is Software Architecture? (Formal ver.)
	Slide 17: Logical Web Architecture
	Slide 18: Physical Web Architecture
	Slide 19: Exercise: Architectural Sketching
	Slide 20: Instructor’s list of subsystems
	Slide 21: Exercise: Architectural Sketching (cont.)
	Slide 22: The Anatomy of Web Browsers
	Slide 23: Why is Software Architecture Important
	Slide 24: Why is Software Architecture Difficult?
	Slide 25: Specific Difficulties
	Slide 26: Attacks on Difficulties
	Slide 27: Agenda

