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Agenda

• Software development lifecycle

• Software architecture: what and why

• Exercise: sketching software architecture

• Review P0 and P1 requirements
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Software Development Lifecycle (SDLC) Phases
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Requirements
•users, stakeholders
•functional & non-functional

Architecture
•break down problem space
•create subsystems and their communication

Design
•further decompose each subsystem
•create components and their communication (in subsystem)

Implementation
•code

Quality Assurance
•test software against requirements
•validate if software meets customer expectations

Deployment

Planning
the waterfall model

CS 445

CS 447

many other 
programming courses

focus of this course
Problems/changes 

in early phases are 
more costly to fix! 



Agile Software Development
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Requirements
•users, stakeholders
•functional & non-functional

Architecture
•break down problem space
•create subsystems and their communication

Design
•further decompose each subsystem
•create components and their communication (in subsystem)

Implementation
•code

Quality Assurance
•test software against requirements
•validate if software meets customer expectations

Deployment

Planning
the waterfall model

CS 445

CS 447

many other 
programming courses

focus of this course

iterative

design 
prototypes

demo 
prototypes

Read more about SDLC and Agile in CS 346 notes: https://student.cs.uwaterloo.ca/~cs346/1251/course-notes/project-management/agile.html 

https://student.cs.uwaterloo.ca/~cs346/1251/course-notes/project-management/agile.html


What is Architecture?

“both the process and the product of planning, designing, and 
constructing buildings or any other structures”

-- Encyclopedia Britannica
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The Three Original Principles

• Durability: a structure should stand up robustly and remain in 
good condition

• Utility: a structure should be suitable for the purposes for which it 
is used

• Beauty: a structure should be aesthetically pleasing

-- De Architectura by Roman architect Vitruvius (1st century AD)
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Why do we Need Architecture?
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Why do we Need Architecture? (Software ver.)
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The Architect

• Distinctive role

• Broadly trained
• Requirements, design, implementation, use

• Has a keen sense of aesthetics

• Strong understanding of the domain

• What do these domain skills look like for buildings? For software?
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Benefits of Architect

• What common benefits can software gain from an architect, that  
a building also gets from its architect?
• Intellectual control and conceptual integrity
• Experience
• Management
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Analogy to Building Architecture

• Architects focus on clients’ needs

• Iteration on a set of blueprints, refining when necessary
• Intermediate plans, mockups, prototypes

• Created by specialists, not end users

• Structure induces properties (e.g., in a castle)

• Architects require broad training
• Leverage lessons from past generations
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Differences from Building Architecture

• What are the key differences between software architecture and 
architecture for buildings?
• Age
• Material
• Delivery machanisms
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Shortcomings of Analogy

• We have much more experience with buildings

• Buildings are physical artifacts; software is intangible

• Expertise in the software industry is less clearly differentiated
(e.g., no “exception specialists”)

• Anyone can write software

• Deployment and operations are very different

• Changes are expected
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Architecture

• Architecture is:
• All about communication
• What “parts” are there
• How do the “parts” fit together

• Architecture is not:
• About development
• About algorithms
• About data structures
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What is Software Architecture?

• The conceptual fabric that defines a system
• All architecture is design but not all design is architecture

• Architectures capture three primary dimensions:
• Structure
• Communication
• Non-functional requirements
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What is Software Architecture? (Formal ver.)

• “Architecture is the fundamental organization of a system, 
embodied in its [subsystems], their relationships to each other 
and the environment, and the principles govering its design and 
evolution”

-- ANSI/IEEE 1471-200
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Logical Web Architecture
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Physical Web Architecture
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Exercise: Architectural Sketching

• Have your favourite draing tool launched
• Microsoft whiteboard  https://whiteboard.office.com
• draw.io  https://app.diagrams.net/
• Mermaid (in plain text) https://mermaid.live/edit

• Target application: web browser (e.g., Chrome, Firefox)

• Task 1: List as many subsystems as you can think of. 
Use boxes to denote subsystems.
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Instructor’s list of subsystems

• UI layer (to support multiple platforms)

• HTML/DOM engine

• CSS processor

• JS engine (to process client-side scripts)

• Networking (to enable “talking” to web servers)

• Bookmark manager

• Secure persistence (e.g., passwords, credit cards)

• History database

• Plugin manager
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Exercise: Architectural Sketching (cont.)

• Continue the drawing from task 1

• Task 2: Connect subsystems that need to communicate.
Use directed arrows to indicate control/data flow.
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The Anatomy of Web Browsers
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http://plg.math.uwaterloo.ca/~migod/papers/2007/emse-browserRefArch.pdf



Why is Software Architecture Important

• “Software architecture is the set of design decisions which, if 
made incorrectly, may cause your project to be cancelled.”

-- Eoin Woods

• Architecture focuses on those aspects of a system that would be 
difficult to change once the system is built
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Why is Software Architecture Difficult?

• “The life of a software architect is a long (and sometimes painful) 
succession of suboptimal decisions made partly in the dark.”

-- Philippe Krutchen

• Young field

• High user expectations

• Software cannot execute independently
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Specific Difficulties

• Complexity: grows non-linearly with program size

• Conformity: system is dependent on its environment

• Changeability: perception that software is easily modified

• Intangibility: not constrained by physical laws
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Attacks on Difficulties

• High-level languages

• Development tools & environments

• Component-based reuse

• Development strategies
• Incremental, evoluntionary, spiral models

• Emphasis on architecture and design
• Design-centric approach taken from outset
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Agenda

• Software development lifecycle

• Software architecture: what and why

• Exercise: sketching software architecture

• Review P0 and P1 requirements
• https://pengyunie.github.io/cs446-1251/docs/project/p0/
• https://pengyunie.github.io/cs446-1251/docs/project/p1/
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