
Software Design & Architecture

UML & Database
Pengyu Nie

Acknowledgements: slides adapted from previous versions by Mei Nagappan and Shane McIntosh, which are adapted from previous versions by Zhen Ming
Jiang, Ahmed E. Hassan, Reid Holmes.

Agenda

• UML Introduction

• Class diagram

• Data model

2

Unified Modeling Language (UML)

• UML is a set of notations, not a methodology or process
• Official standard backed by OMG, version 2.5.1
• Rational Software (now owned by IBM) is the big mover behind UML, but

they don’t “own” it
• Lots of history and politics behind it

• Many expensive tools, seminars, books, hype, etc. … but
• “UML is just a bunch of notations”
• UML doesn’t solve your problems for you, it gives you a way of writing

them down

3

https://www.omg.org/spec/UML/2.5.1/About-UML/

Taxonomy of UML Diagrams

4

last lecture

this lecture

next lecture

static structure of
objects in a system

dynamic behavior of
objects in a system

UML Diagrams by Phases / Perspectives

5

Requirements

Architecture

Design

Implementation

Quality
Assurance

Deployment

Use Case
Diagram

Component
Diagram

Class
Diagram

Sequence
Diagram

Communication
Diagram

State Machine
Diagram

Deployment
Diagram

Activity
Diagram

domain/requirements perspective:
elements & relationships maps to abstract concepts

software/design perspective:
elements & relationships maps to code elements
(classes, method calls)

Usages of UML – Blueprint

• Called as “religions” by Martin Fowler

• UML as blueprint
• Goal is rigorous, complete specification of analysis and/or design of a

software system

• UML diagrams express partial semantics of system
• e.g., structure, communication paths, control/data/other dependencies

• UML diagrams do not completely specify low-level semantics
• e.g., full details of what happens inside a method body

6

analysis
model

design
model code

Usages of UML – Blueprint (cont.)

• UML as blueprint
• Tool support is the key: “round trip engineering”

• Code generation: UML models -> interfaces / class skeletons
• Reverse engineering:

source code -> class diagrams; execution trace -> sequence diagrams

• Choose a desired level of detail (e.g., class + instantiate, call, inherit
relationships);
the UML models are complete with respect to that level of detail

7

analysis
model

design
model code

code
generation

reverse
engineering

Usages of UML – Programming Language

• UML as programming language
• The UML diagrams are the system (as maintenance artifacts, not code)
• Tool support is even more important!

• generate code from detailed UML diagrams (e.g., state machine diagram)

• Unfortunately, we are not quite there yet…
The grand goal of the MDA (model-driven architecture) movement

• Very hard to do the dynamic behavior aspects of the systems

8

https://www.omg.org/mda/

UML Tools

• Drawing
• Microsoft whiteboard https://whiteboard.office.com
• draw.io https://app.diagrams.net/

• UML-specific drawing
• ArgoUML, Microsoft Visio, OmniGraffle, etc.

• UML in plain text (as programming language)
• Mermaid https://mermaid.live/edit
• PlantUML https://www.plantuml.com/

• Different tools produce slightly different diagrams
• don’t get stuck in the details
• make sure the notations in the diagrams are consistent

9

https://whiteboard.office.com/
https://app.diagrams.net/
https://argouml-tigris-org.github.io/tigris/argouml/
https://mermaid.live/edit
https://www.plantuml.com/

Class Diagram

• Definition: describe the types of objects in the system and the various kinds
of static relationships that exist among them;
show the properties and operations (features) of a class and
the constraints that apply to the way objects are connected

• Element
• class (with annotations: interface, enumeration, exception)
• package

• Relationships
• association, aggregation, composition
• generalization
• dependency

10

Class Diagram – Class

11

class name (required)

attributes (optional)
~= fields
structural features of a class

operations (optional)
~= methods/functions
actions that a class knows to carry out

Class Diagram – Class – Attributes & Operations

• Attributes
• visibility name: type [multiplicity] = default {property-string}

• example: +name: String [1] = “Untitled” {readOnly}
• example: -address: Address

• Operations
• visibility name (parameter-list): return-type {property-string}

• example: +getPhone(n: Name, a: Address): PhoneNumber
• example: +eat()

12

visibility
+: public -: private
~: package #: protected

multiplicity
how many objects may fill the property
1: single-valued, exactly one
0..1: optional, zero or one
*: any number, zero or more
1..*: one or more

Class Diagram – Association

13

association
bidirectional / unidirectional
two classes that communicate with each other
another way to notate a property (other than attributes)

name (optional)

multiplicity (optional)
1: single-valued, exactly one
0..1: optional, zero or one
*: any number, zero or more
1..*: one or more

rolename (optional)

Class Diagram – Association (cont.)

14

LinkedListNode
prev

next

dual association between two classes self association

Class Diagram – Association (cont.)

15

association class
allow adding attributes & operations to
associations
can be prompted to a full class

Class Diagram – Aggregation & Composition

16

aggregation
a whole-part relationship between
an aggregate (whole) and a constituent part,
where the part can exist independently from the aggregate

composition
a strong ownership and coinficient lifetime of
parts by the whole

Class Diagram – Generalization

17

generalization
connects a subclass to its superclass
inheritance of attributes and operations
from the superclass to the subclass

multiple inheritance

Class Diagram – Dependency

18

dependency
a semantic relationship between two elements

Class Diagram – Interface

19

interface
a class that has no implementation
most likely no attributes, only operations

realization
connects a class with an interface
that supplies its behavioral specification

Class Diagram – Enumeration, Exception

20

enumeration
a user-defined data type that consists of
an ordered list of enumeration literals

exception
a class representing exceptional state of certain type

Class Diagram – Package

21

package
container-like element for organizing
other elements (classes, packages) into groups

Class diagram with packages can also be called as Package Diagram

dependencies between packages

relationships between classes across packages

Database Design

• Class diagram can be a handy tool for designing your data model
• data model: describing how real-world data is conceptually represented

as computerized information, and the types of operations available to
access and update this information

22

class name -> table name

attributes -> columns (name and type)

select/add an attribute as primary key

association -> relationship

Relational Database Normal Forms

• 1NF: each column contains atomic values of a single type
• avoid collections/arrays attribute; use associations instead
• e.g., phoneNumbers: String[] -> class PhoneNumber + 1..* association

• 2NF: all non-key attributes are fully functionally dependent on the primary key
• decompose classes to eliminate partial dependencies
• e.g., class Order { orderId, productId }

class Product { productId, productName }

• 3NF: all attributes are functionally dependent only on the primary key
• create new classes to eliminate transitive dependencies
• e.g., class Employee { employeeId, departmentId }

class Department { departmentId, departmentName }

• …

23

Relational Database Normal Forms

• Tradeoffs of using higher normal forms
• robustness: less redundancy in database, better data integrity
• scalability:

easier to scale up vertically (add more data into a table);
harder to scale up horizontally (add more classes/tables)

• efficiency:
important queries can be more efficient with less data redundancy;
some queries can become complex and require multiple joins

• complexity: too many components (classes) and connections

• Consider: What classes will have a lot of data to store?
Which classes do you plan to put or not put into database?

24

Object/Relational Mapping Framework

• ORM: converting data between a relational database and memory
of an object-oriented programming language

• Operate on a virtual object database using APIs (no need for SQL)

• Examples
• Firebase – Kotlin / Android
• Hibernate – Java
• SQLAlchemy – Python

25

https://firebase.google.com/docs/database/android/read-and-write#kotlin+ktx_4
https://hibernate.org/
https://www.sqlalchemy.org/

Agenda (recap)

• UML Introduction

• Class diagram

• Data model

• Additional UML References
• UML Distilled – Applying the Standard Object Modeling Language by Martin

Fowler and Kendall Scott
• Applying UML and Patterns: An Introduction to Object-Oriented Analysis and

Design and the Unified Process (3rd Edition) by Craig Larman

• Review P2: Project Proposal requirements

• P1: Project Setup due this Friday!

26

	Slide 1: Software Design & Architecture UML & Database
	Slide 2: Agenda
	Slide 3: Unified Modeling Language (UML)
	Slide 4: Taxonomy of UML Diagrams
	Slide 5: UML Diagrams by Phases / Perspectives
	Slide 6: Usages of UML – Blueprint
	Slide 7: Usages of UML – Blueprint (cont.)
	Slide 8: Usages of UML – Programming Language
	Slide 9: UML Tools
	Slide 10: Class Diagram
	Slide 11: Class Diagram – Class
	Slide 12: Class Diagram – Class – Attributes & Operations
	Slide 13: Class Diagram – Association
	Slide 14: Class Diagram – Association (cont.)
	Slide 15: Class Diagram – Association (cont.)
	Slide 16: Class Diagram – Aggregation & Composition
	Slide 17: Class Diagram – Generalization
	Slide 18: Class Diagram – Dependency
	Slide 19: Class Diagram – Interface
	Slide 20: Class Diagram – Enumeration, Exception
	Slide 21: Class Diagram – Package
	Slide 22: Database Design
	Slide 23: Relational Database Normal Forms
	Slide 24: Relational Database Normal Forms
	Slide 25: Object/Relational Mapping Framework
	Slide 26: Agenda (recap)

