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* Decomposition
* key definitions in architecture

* principles

 Architectural views
* more UML diagrams






What is Software Architecture

* “Architecture is the fundamental organization of a system, embodied in its
components, their relationships to each other and the environment, and the
principles govering its design and evolution”

-- ANSI/IEEE 1471-200
* Working definition: the set of principal design decisions about the system

* Architectures capture three primary dimensions:
e Structure: what are the subsystems and components?
e Communication/ Behaviour: how do they interact?
* Non-functional requirements



Subsystems

* Definition: architectural entity that
* encapsulates a subset of functionality
* restricts access via explicit interface
* has explicit environmental dependencies

* Elements that encapsulate processing and data at an
architectural level

- B3 project/subproject, group of packages/modules



Components

* Definition: architectural/design entity that
* encapsulates a smaller subset of functionality
* restricts access via explicit interface

* Elements from which subsystems are composed

» [ package/module, group of classes/files



Connectors

* Definition: architectural entity tasked with effecting and regulating
Interactions between subsystems

* Application-independent interaction mechanisms

* Describing connectors can be more challenging than subsystems
In large heterogenous systems

. method call, RPC (remote procedure call), shared memory,
network call, streaming connection, etc.



Configuration/Topology

* Definition: a set of specific associations between the subsystems
and the connectors of the system’s architecture

* Bind subsystems and connectors together in a specific way



Decomposition

* Top-down abstraction
* focus on the key issues while removing extraneous detail
* break problem into independent subsystems
* describe each subsystem

* A good decomposition should make typical cases simple, and
exceptional cases possible

* Criteria for decomposition can include
* implementation teams
* application domains (aka obvious patitions)
* parallelization



Coupling and Cohesion

* Minimize coupling between subsystems
* the less that subsystems know about each other, the better
* make future change easier (maintenability)

* Maximize cohesion within each subsystem
* one subsystem should be responsible for one logical service

* components of each subsystem are strongly inter-related
(they really do belong together)
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figure source: https://www.cs.toronto.edu/~sme/CSC302/notes/04-package-diagrams.pdf



Conway’s Law

* The structure of a software system reflects the structure of the
organization that built it

People
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figure source: https://www.cs.toronto.edu/~sme/CSC302/notes/04-package-diagrams.pdf



Law of Demeter / Principle of Least Knowledge

* Each unit should have only limited knowledge about other units:
only units "closely" related to the current unit

* Each unit should only talk to its friends; don't talk to strangers

* Only talk to your immediate friends

A 5 2
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figure source: https://levelup.gitconnected.com/the-law-of-demeter-4bd40aa21cbe



SOLID Principles

* Single responsibility principle
* There should never be more than one reason for a class to change

* Open-closed principle
* Software entities should be open for extension but closed for modification

* Liskov substitution principle

* Functions that use pointers or references to base classes must be able to use
objects of derived classes without knowing it

* Interface segregation principle
* Clients should not be forced to depend upon interfaces that they do not use

* Dependency inversion principle
* Depend upon abstractions, not concretes
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Decomposition isn’t always great

* Decomposition can work well

* e.g., designing a restaurant menu
design appetizers menu

design entrees menu

design desserts menu
design drinks menu

 Decomposition doesn’t always work

* e.g.,writing a play

choose style and theme assemble and edit

write character 1's part
write character 2's part
write character 3's part
.. etc ..

* Decomposition isn’t always possiple
* forvery complex problems (e.g., managing the economy)
* forimpossible problems (e.g., turning water into wine)
* for atomic problems (e.g., adding 1 and 1)

choose a set of

character parts merge
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source: https://www.cs.toronto.edu/~sme/CSC444F/slides/L05-DecompositionAbstraction.pdf



The

Acknowledgements: UML examples from UML Distilled — Applying the Standard Object Modeling Language by Martin Fowler and Kendall Scott



Architectural Views

* Architectural models can be overwhelming

* different views focus on specific subsets of elements or subsets of
relationships

* views often focus on specific concerns or scenarios within a system

* Views overlap i
* maintaining consistency between i =
views is challenging e || [ e ||| e poes e | [mae
Diagram Diagram Diagram Dia:ram
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Component Diagram

* Shows the organization and dependencies between subsystems/components
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Deployment Diagram

 Shows a system’s physical layout
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Seguence Diagram

* Shows the interaction between objects, emphasizing the time ordering of messages
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Sequence Diagram (cont.)

* Shows the interaction between objects, emphasizing the time ordering of messages
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Sequence Diagram (cont.)

* Shows the interaction between objects, emphasizing the time ordering of messages
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Communication Diagram

* Shows the interaction between objects, emphasizing their relationships

* Alternative name: collaboration diagram (in UML v1)
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State Machine Diagram

* Shows the lifecycle of an object, as transitions between states

* Alternative names: state diagram, state machine

transition
make a course selection

. download course offerings

Start state

Selecting

make a different selection erify selection

elect another course

check schedule

final state
ign schedul
CheckingSchedulej T e
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Activity Diagram

* Shows the flow of control (procedural logic) from activity to activity

fork
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parallel execution
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Agenda (recap)

* Decomposition
* key definitions in architecture
* principles

 Architectural views
* more UML diagrams

* P1 due this Friday!
Don’t forget to add wat-cs446 as collaborator to your repo
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