Software Design & Architecture

Decomposition & Architectural Views

Pengyu Nie

Acknowledgements: slides adapted frmus versions by Mei Nagappan and Shane Mclntosh, which are adapted from previous versions by Zhen Mi
Jiang, Ahmed E. Hassan, Reid Holmes.

* Decomposition
* key definitions in architecture

* principles

 Architectural views
* more UML diagrams

What is Software Architecture

* “Architecture is the fundamental organization of a system, embodied in its
components, their relationships to each other and the environment, and the
principles govering its design and evolution”

-- ANSI/IEEE 1471-200
* Working definition: the set of principal design decisions about the system

* Architectures capture three primary dimensions:
e Structure: what are the subsystems and components?
e Communication/ Behaviour: how do they interact?
* Non-functional requirements

Subsystems

* Definition: architectural entity that
* encapsulates a subset of functionality
* restricts access via explicit interface
* has explicit environmental dependencies

* Elements that encapsulate processing and data at an
architectural level

- B3 project/subproject, group of packages/modules

Components

* Definition: architectural/design entity that
* encapsulates a smaller subset of functionality
* restricts access via explicit interface

* Elements from which subsystems are composed

» [package/module, group of classes/files

Connectors

* Definition: architectural entity tasked with effecting and regulating
Interactions between subsystems

* Application-independent interaction mechanisms

* Describing connectors can be more challenging than subsystems
In large heterogenous systems

. method call, RPC (remote procedure call), shared memory,
network call, streaming connection, etc.

Configuration/Topology

* Definition: a set of specific associations between the subsystems
and the connectors of the system’s architecture

* Bind subsystems and connectors together in a specific way

Decomposition

* Top-down abstraction
* focus on the key issues while removing extraneous detail
* break problem into independent subsystems
* describe each subsystem

* A good decomposition should make typical cases simple, and
exceptional cases possible

* Criteria for decomposition can include
* implementation teams
* application domains (aka obvious patitions)
* parallelization

Coupling and Cohesion

* Minimize coupling between subsystems
* the less that subsystems know about each other, the better
* make future change easier (maintenability)

* Maximize cohesion within each subsystem
* one subsystem should be responsible for one logical service

* components of each subsystem are strongly inter-related
(they really do belong together)

10
figure source: https://www.cs.toronto.edu/~sme/CSC302/notes/04-package-diagrams.pdf

Conway’s Law

* The structure of a software system reflects the structure of the
organization that built it

People

11
figure source: https://www.cs.toronto.edu/~sme/CSC302/notes/04-package-diagrams.pdf

Law of Demeter / Principle of Least Knowledge

* Each unit should have only limited knowledge about other units:
only units "closely" related to the current unit

* Each unit should only talk to its friends; don't talk to strangers

* Only talk to your immediate friends

A 5 2

12
figure source: https://levelup.gitconnected.com/the-law-of-demeter-4bd40aa21cbe

SOLID Principles

* Single responsibility principle
* There should never be more than one reason for a class to change

* Open-closed principle
* Software entities should be open for extension but closed for modification

* Liskov substitution principle

* Functions that use pointers or references to base classes must be able to use
objects of derived classes without knowing it

* Interface segregation principle
* Clients should not be forced to depend upon interfaces that they do not use

* Dependency inversion principle
* Depend upon abstractions, not concretes

13

Decomposition isn’t always great

* Decomposition can work well

* e.g., designing a restaurant menu
design appetizers menu

design entrees menu

design desserts menu
design drinks menu

 Decomposition doesn’t always work

* e.g.,writing a play

choose style and theme assemble and edit

write character 1's part
write character 2's part
write character 3's part
.. etc ..

* Decomposition isn’t always possiple
* forvery complex problems (e.g., managing the economy)
* forimpossible problems (e.g., turning water into wine)
* for atomic problems (e.g., adding 1 and 1)

choose a set of

character parts merge

14
source: https://www.cs.toronto.edu/~sme/CSC444F/slides/L05-DecompositionAbstraction.pdf

The

Acknowledgements: UML examples from UML Distilled — Applying the Standard Object Modeling Language by Martin Fowler and Kendall Scott

Architectural Views

* Architectural models can be overwhelming

* different views focus on specific subsets of elements or subsets of
relationships

* views often focus on specific concerns or scenarios within a system

* Views overlap i
* maintaining consistency between i =
views is challenging e || [e ||| e poes e | [mae
Diagram Diagram Diagram Dia:ram

16

Component Diagram

* Shows the organization and dependencies between subsystems/components

component
rectangle with the top-right “component” symbol
__.—""_ can nest other components
g1«
Till |
Sales Server E
interface ' sales e £
connectors between two components message =l =3 _“5_‘*_)
lollipop: provide an interface T =0 {}-----3» Transaction [| Accounting rocesser transaction|
socket: use an interface PRl Processor Driver
L -
. &7 T an alternative way to
. 1 .
port —_ Message Queue }Z represent interface
group required/provided interfaces é use and provide
Accounting
System

17

Deployment Diagram

 Shows a system’s physical layout

BrowserClient

Rich Client
{OS = Windows} W
browser . N
herculesClient.exe * tagged value node
; something that can host some software
icati th E . . .
communication pa : Application Server can be device or execution environment
: .- P
& . E — - /
*y ® & .
* : s
: JoveGL.exe [-
http/Internet http/LAN B4 {vendor = romanSoft} X P
S {component = General Ledger} i P
deployed ar};lfact \ 7
T
FSERAN
Web server EJB Container
{OS = Solaris} _\ artifact
web server = apache} , herculesBase.ear . — | —1 i))
{{number depToyZd =3) Java RMI/ herculesAR.ear physical manifestations of software
LAN herculesAP.ear executables, data files, configuration files, etc.
herculesWeb.war N4
JDBC
+ 1
g g execution a»"“‘y
v environment node
device node
Oracle DBMS

18

Seguence Diagram

* Shows the interaction between objects, emphasizing the time ordering of messages

‘ anOrderLine ‘ participant/object

calculatePrice | ' lifeline :ﬁ} creation
7 > : , and

/ /_/V

getQuantity > :M»’(destroy

message /"/:f getProduct >

message with parameters -

found message _.» _ aProduct |
return message— - — "~ € i
self message — - — . —. calculateBasePrice |
. oy — > |

message with condition — ,:l |

~.

message with iteration > [price == 10] |
*[i=1..N] - calculateDiscounts |

getPrice(quantity: number) |
‘ anOrderLine

19

Sequence Diagram (cont.)

* Shows the interaction between objects, emphasizing the time ordering of messages

| anOrderLine |

calculatePri ce).

etQuantit
getQ y >
|
activation bar getProduct |
shows when each participant is active >
(the function call is on stack) =3 aProduct

calculateBasePrice

—

[price == 10]
calculateDiscounts

[

| anOrderLine

20

Sequence Diagram (cont.)

* Shows the interaction between objects, emphasizing the time ordering of messages

| anOrderLine | | aProduct | | aCustomer|

|
calculatePrice_
o

getQuantity

)- i

getProduct

>
_ aProduct H
= [

getPricingDetails

]
calculateBasePrice |

—

[price == 10] .
calculateDiscounts |

-

< | | |

tDi tinf ! ! !

L Qe ISCoOUncinro : : }||:|
‘ anOrderlLine ‘ ‘ aProduct ‘ ‘ aCustamer‘

21

Communication Diagram

* Shows the interaction between objects, emphasizing their relationships

* Alternative name: collaboration diagram (in UML v1)

} \l/ 1: calculatePrice

message \ bi 1.5.1: getDiscountinfo
1.4: calculateBasePrice |) object] E— (
1.5: calculateDiscounts() an Order a Customer
«
/

1.3: getPricingDetails

Ja

sequence number
can be in nested number format 1.1: getQuantity()
1.2: getProduct {)

(an Order Line }

a Product J

22

State Machine Diagram

* Shows the lifecycle of an object, as transitions between states

* Alternative names: state diagram, state machine

transition
make a course selection

. download course offerings

Start state

Selecting

make a different selection erify selection

elect another course

check schedule

final state
ign schedul
CheckingSchedulej T e

23

Activity Diagram

* Shows the flow of control (procedural logic) from activity to activity

fork

a non-atomic execution
parallel execution
: decision

i conditional branch

I
| : (Dvernight Del iver'yrj (P.egular Deliveryj
: I

Y

| : Receive Paymentj
: I

| merge

Close Order

24

Agenda (recap)

* Decomposition
* key definitions in architecture
* principles

 Architectural views
* more UML diagrams

* P1 due this Friday!
Don’t forget to add wat-cs446 as collaborator to your repo

25

	Slide 1: Software Design & Architecture Decomposition & Architectural Views
	Slide 2: Agenda
	Slide 3: Decomposition
	Slide 4: What is Software Architecture
	Slide 5: Subsystems
	Slide 6: Components
	Slide 7: Connectors
	Slide 8: Configuration/Topology
	Slide 9: Decomposition
	Slide 10: Coupling and Cohesion
	Slide 11: Conway’s Law
	Slide 12: Law of Demeter / Principle of Least Knowledge
	Slide 13: SOLID Principles
	Slide 14: Decomposition isn’t always great
	Slide 15: Architectural Views
	Slide 16: Architectural Views
	Slide 17: Component Diagram
	Slide 18: Deployment Diagram
	Slide 19: Sequence Diagram
	Slide 20: Sequence Diagram (cont.)
	Slide 21: Sequence Diagram (cont.)
	Slide 22: Communication Diagram
	Slide 23: State Machine Diagram
	Slide 24: Activity Diagram
	Slide 25: Agenda (recap)

