
Software Design & Architecture

Decomposition & Architectural Views

Pengyu Nie

Acknowledgements: slides adapted from previous versions by Mei Nagappan and Shane McIntosh, which are adapted from previous versions by Zhen Ming
Jiang, Ahmed E. Hassan, Reid Holmes.

Agenda

• Decomposition
• key definitions in architecture
• principles

• Architectural views
• more UML diagrams

2

Decomposition

3

What is Software Architecture

• “Architecture is the fundamental organization of a system, embodied in its
components, their relationships to each other and the environment, and the
principles govering its design and evolution”

-- ANSI/IEEE 1471-200

• Working definition: the set of principal design decisions about the system

• Architectures capture three primary dimensions:
• Structure: what are the subsystems and components?
• Communication / Behaviour: how do they interact?
• Non-functional requirements

4

Subsystems

• Definition: architectural entity that
• encapsulates a subset of functionality
• restricts access via explicit interface
• has explicit environmental dependencies

• Elements that encapsulate processing and data at an
architectural level

• project/subproject, group of packages/modules

5

Components

• Definition: architectural/design entity that
• encapsulates a smaller subset of functionality
• restricts access via explicit interface

• Elements from which subsystems are composed

• package/module, group of classes/files

6

Connectors

• Definition: architectural entity tasked with effecting and regulating
interactions between subsystems

• Application-independent interaction mechanisms

• Describing connectors can be more challenging than subsystems
in large heterogenous systems

• method call, RPC (remote procedure call), shared memory,
network call, streaming connection, etc.

7

Configuration/Topology

• Definition: a set of specific associations between the subsystems
and the connectors of the system’s architecture

• Bind subsystems and connectors together in a specific way

8

Decomposition

• Top-down abstraction
• focus on the key issues while removing extraneous detail
• break problem into independent subsystems
• describe each subsystem

• A good decomposition should make typical cases simple, and
exceptional cases possible

• Criteria for decomposition can include
• implementation teams
• application domains (aka obvious patitions)
• parallelization

9

Coupling and Cohesion

• Minimize coupling between subsystems
• the less that subsystems know about each other, the better
• make future change easier (maintenability)

• Maximize cohesion within each subsystem
• one subsystem should be responsible for one logical service
• components of each subsystem are strongly inter-related

(they really do belong together)

10
figure source: https://www.cs.toronto.edu/~sme/CSC302/notes/04-package-diagrams.pdf

Conway’s Law

• The structure of a software system reflects the structure of the
organization that built it

11
figure source: https://www.cs.toronto.edu/~sme/CSC302/notes/04-package-diagrams.pdf

Law of Demeter / Principle of Least Knowledge

• Each unit should have only limited knowledge about other units:
only units "closely" related to the current unit

• Each unit should only talk to its friends; don't talk to strangers

• Only talk to your immediate friends

12
figure source: https://levelup.gitconnected.com/the-law-of-demeter-4bd40aa21cbe

SOLID Principles

• Single responsibility principle
• There should never be more than one reason for a class to change

• Open-closed principle
• Software entities should be open for extension but closed for modification

• Liskov substitution principle
• Functions that use pointers or references to base classes must be able to use

objects of derived classes without knowing it

• Interface segregation principle
• Clients should not be forced to depend upon interfaces that they do not use

• Dependency inversion principle
• Depend upon abstractions, not concretes

13

Decomposition isn’t always great

• Decomposition can work well
• e.g., designing a restaurant menu

• Decomposition doesn’t always work
• e.g., writing a play

• Decomposition isn’t always possiple
• for very complex problems (e.g., managing the economy)
• for impossible problems (e.g., turning water into wine)
• for atomic problems (e.g., adding 1 and 1)

14

choose style and theme

design appetizers menu

design entrees menu

design desserts menu

design drinks menu

assemble and edit

choose a set of
character parts

write character 1’s part

write character 2’s part

write character 3’s part

… etc …

merge

source: https://www.cs.toronto.edu/~sme/CSC444F/slides/L05-DecompositionAbstraction.pdf

Architectural Views

15
Acknowledgements: UML examples from UML Distilled – Applying the Standard Object Modeling Language by Martin Fowler and Kendall Scott

Architectural Views

• Architectural models can be overwhelming
• different views focus on specific subsets of elements or subsets of

relationships
• views often focus on specific concerns or scenarios within a system

• Views overlap
• maintaining consistency between

views is challenging

16

Component Diagram

• Shows the organization and dependencies between subsystems/components

17

component
rectangle with the top-right “component” symbol
can nest other components

interface
connectors between two components
lollipop: provide an interface
socket: use an interface

port
group required/provided interfaces

an alternative way to
represent interface
use and provide

Deployment Diagram

• Shows a system’s physical layout

18

node
something that can host some software
can be device or execution environment

artifact
physical manifestations of software
executables, data files, configuration files, etc.

Sequence Diagram

• Shows the interaction between objects, emphasizing the time ordering of messages

19

participant/object

lifeline

message
found message
return message
self message
message with condition

creation
and
destroy

message with iteration
 * [i = 1..N]
message with parameters
 getPrice(quantity: number)

Sequence Diagram (cont.)

• Shows the interaction between objects, emphasizing the time ordering of messages

20

activation bar
shows when each participant is active
(the function call is on stack)

Sequence Diagram (cont.)

• Shows the interaction between objects, emphasizing the time ordering of messages

21

Communication Diagram

• Shows the interaction between objects, emphasizing their relationships

• Alternative name: collaboration diagram (in UML v1)

22

objectmessage

sequence number
can be in nested number format

State Machine Diagram

• Shows the lifecycle of an object, as transitions between states

• Alternative names: state diagram, state machine

23

state

transition
start state

final state

Activity Diagram

• Shows the flow of control (procedural logic) from activity to activity

24

activity
a non-atomic execution

flow

fork
parallel execution

decision
conditional branch

merge

join

Agenda (recap)

• Decomposition
• key definitions in architecture
• principles

• Architectural views
• more UML diagrams

• P1 due this Friday!
Don’t forget to add wat-cs446 as collaborator to your repo

25

	Slide 1: Software Design & Architecture Decomposition & Architectural Views
	Slide 2: Agenda
	Slide 3: Decomposition
	Slide 4: What is Software Architecture
	Slide 5: Subsystems
	Slide 6: Components
	Slide 7: Connectors
	Slide 8: Configuration/Topology
	Slide 9: Decomposition
	Slide 10: Coupling and Cohesion
	Slide 11: Conway’s Law
	Slide 12: Law of Demeter / Principle of Least Knowledge
	Slide 13: SOLID Principles
	Slide 14: Decomposition isn’t always great
	Slide 15: Architectural Views
	Slide 16: Architectural Views
	Slide 17: Component Diagram
	Slide 18: Deployment Diagram
	Slide 19: Sequence Diagram
	Slide 20: Sequence Diagram (cont.)
	Slide 21: Sequence Diagram (cont.)
	Slide 22: Communication Diagram
	Slide 23: State Machine Diagram
	Slide 24: Activity Diagram
	Slide 25: Agenda (recap)

