
Software Design & Architecture
Architectural Styles /

Server-Client, Microservices, Serverless

Pengyu Nie

Acknowledgements: slides adapted from previous versions by Mei Nagappan and Shane McIntosh, which are adapted from previous versions by Zhen Ming 
Jiang, Ahmed E. Hassan, Reid Holmes.



Agenda

• Server-client

• Microservices

• Serverless

2



Server-Client

3

e.g.,
http request
RPC (remote procedure call)
REST API
message queue

Suitable for applications that involve distributed data and processing across a range of components



Server-Client – Deployment View

4

servers and clients can be 
on the same machine



Server-Client – Network View

5



Server-Client – Pros and Cons

6

+ Straightforward and transparent distribution of data

+ Heterogenerous platforms

+ Easy to add new servers or upgrade existing servers

- No central register of services



Microservices

7

Suitable for complex applications that require short release cycles and must be highly scalable

microservice
• implement one functionality (“service”)
• deployed independently, usually in docker containers
• may have a dedicated database

Orchestrator

responsible for the deployment, management, 
and auto-scaling of microservices
e.g., Kubernetes: https://kubernetes.io/ 

https://kubernetes.io/


Microservices – Example 

8
example: https://github.com/GoogleCloudPlatform/microservices-demo 

https://github.com/GoogleCloudPlatform/microservices-demo


Microservices – Pros and Cons

9

+ Independently deployable and scalable

+ Reduce downtime

+ Enable a high degree of team autonomy

+ Easier CI/CD integration, simpler maintenance

- High cost (to keep many microservices up and running)

- Complexity



Serverless

10

Suitable when the system load is not consistent and latency is not a concern

serverless functions / FaaS (function-as-a-service)
• implement one simple functionality
• triggered by events (http, storage events, messages, etc.) 
• stateless: no in-memory state between invocations
• ephemeral: execution time X seconds – X minutes

Serverless
Platform

responsible for hosting the functions, spawning containers to 
run them, monitoring events, and auto-scaling
e.g., Google Cloud Run: https://cloud.google.com/functions 

more example functions see: https://cloud.google.com/functions/docs/samples 

https://cloud.google.com/functions
https://cloud.google.com/functions/docs/samples


Serverless – Pros and Cons

11

+ Pay per use

+ Fast deployment and less maintenance

+ Easy to debug

- Third-party dependency

- Initial latency (cold start)

- Stateless nature



Microservices vs. Serverless

12

Microservices Serverless

• Runs 24/7

• In house / on cloud

• Complex functionalities possible

• Expensive upfront

• Runs when triggered

• Tied to cloud provider

• Short running simple operations

• Reduced cost



Agenda (recap)

• Server-client

• Microservices

• Serverless

• Setup on Google Cloud:
• microservices with Kubernetes: 

https://cloud.google.com/kubernetes-engine?hl=en 
• serverless: https://cloud.google.com/run?hl=en 

13

https://cloud.google.com/kubernetes-engine?hl=en
https://cloud.google.com/run?hl=en

	Slide 1: Software Design & Architecture Architectural Styles / Server-Client, Microservices, Serverless
	Slide 2: Agenda
	Slide 3: Server-Client
	Slide 4: Server-Client – Deployment View
	Slide 5: Server-Client – Network View
	Slide 6: Server-Client – Pros and Cons
	Slide 7: Microservices
	Slide 8: Microservices – Example 
	Slide 9: Microservices – Pros and Cons
	Slide 10: Serverless
	Slide 11: Serverless – Pros and Cons
	Slide 12: Microservices vs. Serverless
	Slide 13: Agenda (recap)

