Software Design & Architecture

Architectural Styles /
Server-Client, Microservices, Serverless

Pengyu Nie

g%

N
A \
Acknowledgements: slides adapted frmus versions by Mei Nagappan and Shane Mclntosh, which are adapted from previous versions by Zhe;\

Jiang, Ahmed E. Hassan, Reid Holmes.

e Server-client

* Microservices

e Serverless

Server-Client

Suitable for applications that involve distributed data and processing across a range of components

2 | S
Server]7@)_{ Cllent EHMTE%J &Tg_ﬂ

interface

| g
Database Server O Database \."lewer File Server O File Explorer
query read/write

e.g.,
http requeSt ‘ Code Completlon }—m
RPC (remote procedure call) (])_{ EI‘ == language

Terminal Server O Terminal Window zerver
REST API 10

protocol

message queue

Server Machine Client Machine
OS=Linux OS=Android
i) i
File Server | O) | File Explorer
read/wfite
Machine
Container1 -
_ Container2
language=FPython fanguage=JavasScript

|
Code Completion

e

Engine ‘

O]

LsSP

]
Editor

Server-Client — Deployment View

servers and clients can be

on the same machine

Server-Client — Network View

Server O Client]

interface

network I

FileServer DatabaseServer
Client1 Client2 Client3
OS=Android OS=Windows 05=MacQOS

Server-Client — Pros and Cons

+ Straightforward and transparent distribution of data
+ Heterogenerous platforms

+ Easy to add new servers or upgrade existing servers

- No central register of services

Microservices

Suitable for complex applications that require short release cycles and must be highly scalable

X

User

APl Gateway
microservice

* implement one functionality (“service”)

* deployed independently, usually in docker containers
* may have a dedicated database

]
File System

Payment =
Service

i
Service ZEEEEIo)
“
B
.
. .
.
‘e .0.
e ‘e,
N .
. .
0. '-...
.
3
3
3
.
3
3
s

Database__=

L 11
Service ==

- | Notification__m
L1 1]

i| Service mamm

""""
.......
. ‘e
.

responsible for the deployment, management,
and auto-scaling of microservices
- s . e.g., Kubernetes: https://kubernetes.io/
Authentication
Service mmml, el

4..................-......::..'.:.:.:':'E!ln OrCheStrator ‘!

https://kubernetes.io/

Microservices — Example

Service Language Description
Exposes an HTTP server to serve the website. Does not require
R frontend Go
E— signup/login and generates session IDs for all users automatically.
User loadgenerator
) cartservice C# Stores the items in the user's shopping cart in Redis and retrieves it.
HTTP HTTP -
~—) Provides the list of products from a JSON file and ability to search
productcatalogservice Go o
frontend > checkout products and get individual products.
N . . Converts one money amount to another currency. Uses real values
currencyservice Node.js . .)
o) N R o fetched from European Central Bank. It's the highest QPS service.
ad recommendation X payment email . . Charges the given credit card info (mock) with the given amount
e / paymentservice Node.js .
/ N\ and returns a transaction ID.
4 A Gives shipping cost estimates based on the shopping cart. Ships
. - shippingservice Go . PP g pping P
productcatalog shipping currency items to the given address (mock)
j emailservice Python Sends users an order confirmation email (mock).
cart
) Retrieves user cart, prepares order and orchestrates the payment,
checkoutservice Go L. . I
v — shipping and the email notification.
fRedis Cach‘ﬂ recommendationservice = Python Recommends other products based on what's given in the cart.
) adservice Java Provides text ads based on given context words.
Continuously sends requests imitating realistic user shopping flows
loadgenerator Python/Locust y C| g Pping

to the frontend.

example: https://github.com/GoogleCloudPlatform/microservices-demo

https://github.com/GoogleCloudPlatform/microservices-demo

Microservices — Pros and Cons

+ Independently deployable and scalable
+ Reduce downtime
+ Enable a high degree of team autonomy

+ Easier CI/CD integration, simpler maintenance

- High cost (to keep many microservices up and running)

- Complexity

Serverless

Suitable when the system load is not consistent and latency is not a concern

X

User

]
APl Gateway

[

':j []

Payment °
Function

.
.,
Yo
0
.

]

......... | database

Notification
Function

*

3
e
.
.
L

A

0
0
0
‘e
L
",
LN
.....

Authentication
Function

from datetime import datetime

def hello_analytics(data, context):
““"Triggered by a Google Analytics for Firebase log event.
Args:
data (dict): The event payload.
context (google.cloud.functions.Context): Metadata for the event.

trigger_resource = context.resource
print(f"Function triggered by the following event: {trigger_resource}")

event = data["eventDim"][@]

serverless functions / FaaS (function-as-a-service) prant(fiane: feventlinens 1))

event_timestamp = int(event["timestampMicros"][:-6])

implement One Simple functionality print(f"Timestamp: {datetime.utcfromtimestamp(event_timestamp)}")
triggered by events (http, storage events, messages, etc.) e - gl uenn]

print(f'Device Model: {user_obj["deviceInfo"][“deviceModel”]}")

stateless: no in-memory state between invocations AT o e AR

print(f'Location: {geo_info["city"]}, {geo_info["country"]}')

~. * ephemeral: execution time X seconds — X minutes

responsible for hosting the functions, spawning containers to
run them, monitoring events, and auto-scaling
e.g., Google Cloud Run: https://cloud.google.com/functions

Serverless
Platform

10

more example functions see: https://cloud.google.com/functions/docs/samples

https://cloud.google.com/functions
https://cloud.google.com/functions/docs/samples

Serverless — Pros and Cons

+ Pay per use
+ Fast deployment and less maintenance

+ Easy to debug

- Third-party dependency
- Initial latency (cold start)

- Stateless nature

11

Microservices vs. Serverless

Microservices Serverless
 Runs 24/7 * Runswhen triggered
* Inhouse/oncloud * Tiedto cloud provider

« Complex functionalities possible Short running simple operations

* Expensive upfront * Reduced cost

Go gle Cloud ;7 Cloud Run

adWS AWS Lambda
BY Azure

12

Agenda (recap)

e Server-client
* Microservices

e Serverless

* Setup on Google Cloud:

* microservices with Kubernetes:
https://cloud.google.com/kubernetes-engine?hl=en

* serverless: https://cloud.google.com/run?hl=en

13

https://cloud.google.com/kubernetes-engine?hl=en
https://cloud.google.com/run?hl=en

	Slide 1: Software Design & Architecture Architectural Styles / Server-Client, Microservices, Serverless
	Slide 2: Agenda
	Slide 3: Server-Client
	Slide 4: Server-Client – Deployment View
	Slide 5: Server-Client – Network View
	Slide 6: Server-Client – Pros and Cons
	Slide 7: Microservices
	Slide 8: Microservices – Example
	Slide 9: Microservices – Pros and Cons
	Slide 10: Serverless
	Slide 11: Serverless – Pros and Cons
	Slide 12: Microservices vs. Serverless
	Slide 13: Agenda (recap)

