
Software Design & Architecture
Architectural Styles /

Pipe-Filter, Layered, Repository, and others

Pengyu Nie

Acknowledgements: slides adapted from previous versions by Mei Nagappan and Shane McIntosh, which are adapted from previous versions by Zhen Ming
Jiang, Ahmed E. Hassan, Reid Holmes.

Agenda

• Pipe-filter

• Layered

• Repository

• Implicit invocation (brief)

• Process-control (brief)

• Wrapup architectural styles

2

Pipe-Filter

• Suitable for applications that require a defined series of independent
computations to be performed on ordered data

3

filter
• perform local transformations

• no state sharing among filters
• no knowledge about upstream or

downstream filters
• incremental processing: outputs begin

before all inputs are consumed

pipe

Pipe-Filter – Examples

4

Unix Shell

counting pdf files in current directory
ls | grep ‘.pdf’ | wc -l

pipeline variant
linear sequence of filters

Compiler

batch sequential variant
each filter process all inputs before
producing any output

Pipe-Filter – Pros and Cons

5

+ Readability, Maintenability, Reusability

+ filters with the same input/output data format can be used interchangeably

+ filters can be easily replaced or improved

+ Efficiency: naturally support concurrent execution

+ Permit throughput and deadlock analyses
- Complexity

- Efficiency: loss of performance due to (de)serialization

- Not for interactive systems
variant: can be improved by making filters less isolated
• sharing cache among filters
• using customized data formats on some pipes

Layered

• Suitable for applications that can be organized into a hierarchy of layers,
where each layer may obtain services from a layer above or below it

6
image source: https://developer.android.com/topic/architecture

variant: allowing non-adjacent
layers to communicate directly
(may improve efficiency at the
cost of lower readability)

https://developer.android.com/topic/architecture

Layered – (More) Examples

7

Operating System

Computer network layers: https://student.cs.uwaterloo.ca/~cs456/lectures/lec03.pdf
Operating system layers: https://www.eecg.utoronto.ca/~jacobsen/os/2007s/os-architecture.pdf

Computer Network

https://student.cs.uwaterloo.ca/~cs456/lectures/lec03.pdf
https://www.eecg.utoronto.ca/~jacobsen/os/2007s/os-architecture.pdf

Layered – Pros and Cons

8

+ Readability, Maintainability, Reusability

+ changes to one layer affects at most two adjacent layers

+ different implementations of the same layer can be used interchangeably

+ Design advantage based on the increasing levels of abstraction

- Not all systems are easily structured in a layered fashion

- Efficiency: performance requirements may force the coupling of
high-level functions to their low-level implementations

Repository (aka Data-Centered)

• Suitable for applications in which the central issue is establishing,
augmenting, and maintaining a complex central body of information

9

repository
• central data storage representing the

current state of the system
• usually has long-term persistence

independent components that
operate on the repository
• may be triggered by changes on the repository
• may perform concurrent computes and data accesses

Repository – Examples

10

Android App
Data Layer

Code Editor

more about the repository in Android data layer: https://developer.android.com/topic/architecture/data-layer

https://developer.android.com/topic/architecture/data-layer

Repository – Pros and Cons

11

+ Readability, Maintainability, Reusability

+ repository can be reused or shared across different parts of the application

+ components communicate through the repository’s sharing model

+ Reliability: centralized data management

+ Efficiency: avoid copies of large amounts of data in multiple components

- Complexity

- must agree on a data schema a priori (or extra layer of mapping)

- Evolvability: evolving data schema requires changing all components

- Single point of security failure; difficult to distribute data

Implicit Invocation

• Suitable for applications where the components producing data do not
directly know what other components may consume data

12

publish-subscribe variant
subscribers register to receive specific messages from publishers
e.g., social media, RSS

event-based variant
components asynchronously emit and receive events
communicated over the event bus
e.g., IDE, GUI events

+ Scalability and flexibility at runtime
- Hidden dependencies; unpredictable execution order

Process-Control (aka Feedback-Control)

• Suitable for applications whose purpose is to maintain specified properties
of the outputs of the process at (sufficiently near) given reference values

13

Examples: temperature controller, autonomous driving

+ Reliability and Robustness: adapt to changing conditions

- Cost for continuous monitoring; latency issues

Architectural Styles Epilogue

• Choose architectural styles based on the problem natural and NFRs

• Reference the architecture of famous open-source applications:
https://aosabook.org/en/index.html

• The right architecture is the one that addresses the real-world needs,
even if that means bending or blending traditional styles

14

MVVM
MVC MVP

Server-Client Pipe-Filter

Layered Microservices Implicit Invocation

Repository Serverless Process-Control

https://aosabook.org/en/index.html

Agenda (recap)

• … architectural styles …

• Take-home exercise:
What architectural styles are appropriate for your application
(except for the obvious ones: MVVM, standard Android app layers)?
• use UML diagrams to represent your architecture
• guide your project development

• P3 Iteration 1 Demo this Wednesday, come at your assigned slot!

15

https://pengyunie.github.io/cs446-1251/docs/project/p3/#demonstration-slot

	Slide 1: Software Design & Architecture Architectural Styles / Pipe-Filter, Layered, Repository, and others
	Slide 2: Agenda
	Slide 3: Pipe-Filter
	Slide 4: Pipe-Filter – Examples
	Slide 5: Pipe-Filter – Pros and Cons
	Slide 6: Layered
	Slide 7: Layered – (More) Examples
	Slide 8: Layered – Pros and Cons
	Slide 9: Repository (aka Data-Centered)
	Slide 10: Repository – Examples
	Slide 11: Repository – Pros and Cons
	Slide 12: Implicit Invocation
	Slide 13: Process-Control (aka Feedback-Control)
	Slide 14: Architectural Styles Epilogue
	Slide 15: Agenda (recap)

