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Agenda

• Design patterns introduction, benefits, category

• Creational design patterns
• Singleton
• Factory Method
• Abstract Factory
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Design Patterns Introduction
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Design Patterns Introduction

• Reusable solutions to common problems in 
object-oriented programming
• A design pattern typically involves a small set of classes co-operating to 

achieve a desired end
• This is done via adding a level of indirection in some clever way, and
• The new improved solution provides the small functionality as an existing 

approach, but in the some more desirable way 
(elegance, efficiency, adaptability)
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Design Patterns Introduction (cont.)

• Think of design patterns as…
• high-level programming abstractions
• a form of code reuse (experience reuse)
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Software 
Architecture

Design Patterns

OOP (classes, interfaces, 
modules, information 

hiding)

Basics (data structures, algorithms, 
tools and language details)



Design Patterns Benefits (1)

• Leveraging existing design knowledge: other people have faced 
similar situations
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Image source: https://i1.wp.com/www.roofcalc.net/wp-content/uploads/2014/06/Roof-Types-Diagram.png



Design Pattern Benefits (2)

• Design patterns give developers a 
shared vocabulary as well as a 
shared code experience
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Image source: Eric Freeman and Elisabeth Robson. Head First Design Patterns.



Design Patterns Benefits (3)

• Enhancingg flexibility for change: when maintainer looks at the 
code and design patterns choices, they know what changes they 
can make without breaking the design
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Image source: https://i1.wp.com/www.roofcalc.net/wp-content/uploads/2014/06/Roof-Types-Diagram.png



Design Patterns Benefits (4)

• Design new systems using higher-level abstractions than variables, 
procedures, and classes

• Understand relative tradeoffs, appropriateness, (dis)advantages of 
patterns

• Communicate about systems with other developers

• Give guidance in resolving non-functional requirements and trade-offs

• Avoid known traps, pitfalls, and temptations

• Ease restructuring, refactoring

• Foster coherent, directed system evolution and maintenance
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Design Patterns Resources
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“Gang of Four” Design Patterns Head First Design Patterns

Online resources
• https://refactoring.guru/design-patterns
• https://www.geeksforgeeks.org/software

-design-patterns/
• https://hillside.net/patterns/
• etc.

https://refactoring.guru/design-patterns
https://hillside.net/patterns/
https://hillside.net/patterns/
https://hillside.net/patterns/


Design Patterns Categories

• Creational: concern the process of object creation
• Singleton, Factory Method, Abstract Factory,

Builder, Prototype, Object Pool

• Structural: concern the process of assembling objects and classes
• Adapter, Composite, Decorator,

Façade, Bridge, Flyweight, Proxy

• Behavioral: concern the interaction between classes or objects
• Observer, Strategy, Template Method,

Iterator, State, Chain of Responsibility, 
Command, Mediator, Memento
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today

design patterns 2

design patterns 3

design patterns 4 – your pick from the remaining ones



Singleton
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Singleton: Motivation and Intent

• Motivation: some classes must only have one instance
(e.g., file system, database connection, window manager)

• Intent: ensure a class has only one instance; provide a global point of access
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Image source: Eric Freeman and Elisabeth Robson. Head First Design Patterns.



Singleton: Solution
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class Singleton private constructor() {
  companion object {
    private var instance: Singleton? = null
    fun getInstance(): Singleton {
      if (instance == null) { instance == Singleton() }
      return instance!!
    }
  }
  // … (other fields or methods)
}

object Singleton {
  // … (other fields or methods)
}

Kotlin has built-in support for Singleton
with object keyword … or the more traditional way

no public constructor!
instantiation happens only once

Demo: https://github.com/pengyunie/CS446Demo1251/tree/main/app/src/main/java/ca/uwaterloo/cs446/dp/singleton 

https://github.com/pengyunie/CS446Demo1251/tree/main/app/src/main/java/ca/uwaterloo/cs446/dp/singleton


Factory Method
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Factory Method: Motivation and Intent

• Motivation: 
• we want to create an object of (a subclass of) an abstract class
• we don’t care which subclass is used

• Intent: 
• define an interface for creating objects in the superclass
• but let subclasses alter the type of objects that will be created
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Image source: https://refactoring.guru/design-patterns/factory-method



Factory Method: Solution
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factory method

✓ Single responsibility principle
• (abstract) Creator: define the common operation steps
• (concrete) CreatorA/B: define which product being used
• (abstract) Product: declare common interface
• (concrete) ProductA/B: implement each operation

✓ Open-closed principle
• client can extend to CreatorC, ProductC, etc.



Factory Method: Solution (cont.)
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factory method

✓ Dependency inversion principle

Demo: https://github.com/pengyunie/CS446Demo1251/tree/main/app/src/main/java/ca/uwaterloo/cs446/dp/factorymethod 

VS

https://github.com/pengyunie/CS446Demo1251/tree/main/app/src/main/java/ca/uwaterloo/cs446/dp/factorymethod


Abstract Factory
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Abstract Factory: Motivation and Intent

• Motivation: 
• we want to create objects of (some subclasses of) several abstract classes (e.g., following a theme)
• we don’t care which subclasses are used

• Intent: 
• provide an interface for creating families of related/dependent objects without specifying their 

concrete classes
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Image source: https://refactoring.guru/design-patterns/abstract-factory



Abstract Factory: Solution
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scaling up the factory method 
design pattern

Demo: https://github.com/pengyunie/CS446Demo1251/tree/main/app/src/main/java/ca/uwaterloo/cs446/dp/abstractfactory 

https://github.com/pengyunie/CS446Demo1251/tree/main/app/src/main/java/ca/uwaterloo/cs446/dp/abstractfactory


Agenda (recap)

• Design patterns introduction, benefits, category

• Creational design patterns
• Singleton
• Factory Method
• Abstract Factory

• Review P4: Iteration 2 Demo requirements
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https://pengyunie.github.io/cs446-1251/docs/project/p4/
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