Software Design & Architecture

Design Patterns/
Creational Design Patterns

Pengyu Nie

Acknowledgements: slides adapted frmus versions by Mei Nagappan and Shane Mclntosh, which are adapted from previous versions by Zhe;\

Jiang, Ahmed E. Hassan, Reid Holmes.

* Design patterns introduction, benefits, category

* Creational design patterns
* Singleton
* Factory Method
* Abstract Factory

Design Patterns Introduction

* Reusable solutions to common problems in
object-oriented programming
* A design pattern typically involves a small set of classes co-operating to
achieve a desired end
* This is done via adding a level of indirection in some clever way, and

* The new improved solution provides the small functionality as an existing
approach, butin the some more desirable way
(elegance, efficiency, adaptability)

Design Patterns Introduction (cont.)

* Think of design patterns as...
* high-level programming abstractions

* aform of code reuse (experience reuse)

Design Patterns Benefits (1)

* Leveraging existing design knowledge: other people have faced
similar situations

Image source: https://i1.wp.com/www.roofcalc.net/wp-content/uploads/2014/06/Roof-Types-Diagram.png

Design Pattern Benefits (2)

* Design patterns give developers a
shared vocabulary as well as a
shared code experience

So I created this broadcast class. It keeps
track of all the objects listening to it, and
anytime a new piece of data comes along it sends
a message to each listener. What's cool is that the
listeners can join the broadcast at any time or
they can even remove themselves. It is really
dynamic and loosely coupled!

Exactly. If you communicate
in patterns, then other developers
know immediately and precisely the
design you're describing. Just don't
get Pattern Fever...you'll know you

have it when you start using patterns
for Hello World...

Rick, why didn't you
Just say you are using
the Observer Pattern?

Image source: Eric Freeman and Elisabeth Robson. Head First Design Patterns.

Design Patterns Benefits (3)

* Enhancingg flexibility for change: when maintainer looks at the
code and design patterns choices, they know what changes they
can make without breaking the design

Roof Types

-

Dutch Gable Hexagonal Gazebo

Image source: https://i1.wp.com/www.roofcalc.net/wp-content/uploads/2014/06/Roof-Types-Diagram.png

Design Patterns Benefits (4)

* Design new systems using higher-level abstractions than variables,
procedures, and classes

* Understand relative tradeoffs, appropriateness, (dis)advantages of
patterns

* Communicate about systems with other developers

* Give guidance in resolving non-functional requirements and trade-offs
* Avoid known traps, pitfalls, and temptations

* Ease restructuring, refactoring

* Foster coherent, directed system evolution and maintenance

Design Patterns Resources

Copyrighted Material

O'REILLY" 6‘5.@00
/(;. /)Q’
O,

Design Patterns Head First " Ontine resources
Elements of Reusable DeSi N * https://refactoring.guru/design-patterns
Object-Oriented Software g | * https://www.geeksforgeeks.org/software
Ef.icrt‘ %ag‘e'?a Pqtterns > -design-patterns/

char m ‘ . .
R;Iph Johnson - . . * https://hillside.net/patterns/
John Vlissides Building Extensible

& Maintainable e etc.
Object-Oriented

Software

Eric Freeman &
Elisabeth Robson
with Kathy Sierra & Bert Bates

ML Excher / Comon A - Saien - Hoflaned. AB righs el

rd by Grady Booch

|
Copyrighted Material

“Gang of Four” Design Patterns Head First Design Patterns

A Brain-Friendly Guide

10

https://refactoring.guru/design-patterns
https://hillside.net/patterns/
https://hillside.net/patterns/
https://hillside.net/patterns/

Design Patterns Categories

* Creational: concern the process of object creation

Singleton, Factory Method, Abstract Factory,

today

Builder, Prototype, Object Pool

* Structural: concern the process of assembling objects and classes

Adapter, Composite, Decorator,

Facade, Bridge, Flyweight, Proxy

design patterns 2

* Behavioral: concern the interaction between classes or objects

Observer, Strategy, Template Method,| design patterns 3
lterator, State, Chain of Responsibility,

Command, Mediator, Memento

design patterns 4 —your pick from the remaining ones

11

Singleton: Motivation and Intent

* Motivation: some classes must only have one instance
(e.g., file system, database connection, window manager)

* Intent: ensure a class has only one instance; provide a global point of access

You talkin’ o me or the car?
Oh, and when can I get my oven
mitt back?

I tell ya she's ONE
OF A KIND. Look at the
lines, the curves, the body,
the headlights!

13
Image source: Eric Freeman and Elisabeth Robson. Head First Design Patterns.

Singleton: Solution

// the one instance of the classlﬁ

© Singleton /1 global point of access ™
-instance: Singleton = null/| |f_(|nstanc:e - nul_l) { no public constructor!
/,/" instance = new Singleton() : L.
+getinstance(); Singlemnﬁf—f’) instantiation happens only once
‘ ‘ return instance

Kotlin has built-in support for Singleton

with object keyword ... or the more traditional way

object Singleton { class Singleton private constructor() {
// .. (other fields or methods) companion object {
} private var instance: Singleton? = null
fun getInstance(): Singleton {

if (instance == null) { instance == Singleton() }
return instance!!
}
}
// .. (other fields or methods)

}

14
Demo: https://github.com/pengyunie/CS446Demo1251/tree/main/app/src/main/java/ca/uwaterloo/cs446/dp/singleton

https://github.com/pengyunie/CS446Demo1251/tree/main/app/src/main/java/ca/uwaterloo/cs446/dp/singleton

Factory Method: Motivation and Intent

* Motivation:
* we want to create an object of (a subclass of) an abstract class

e we don’t care which subclass is used

* |Intent:
* define an interface for creating objects in the superclass

* but let subclasses alter the type of objects that will be created

1L0GISTICS!

O00000F
LOGISTICS OO00o000 LOGISTICS
guogajoaoooOooaoon

16

Image source: https://refactoring.guru/design-patterns/factory-method

Factory Method: Solution

@ Creator . Product

factory method - —.. -

Te createProduct(): Product

\ @ operation(): void e doStuff(): void

| A Vz\
i \‘ E \\\N
: \ !

© CreatorA I “\ © CreatorB © ProductA © ProductB

o createProduct(): Product o createProduct(): Product o doStuff(): void e doStuff(): void

v' Single responsibility principle
* (abstract) Creator: define the common operation steps
* (concrete) CreatorA/B: define which product being used
* (abstract) Product: declare common interface
* (concrete) ProductA/B: implement each operation

v' Open-closed principle
* client can extend to CreatorC, ProductC, etc.

17

Factory Method: Solution (cont.)

® Creator

factory method f~-. — -
y F " Te createProduct(): Product

. Product

e doStuff(): void

e operation(): void
B A=
| |
: \ ! X
© CreatorA | ‘\ © CreatorB © ProductA © ProductB
o createProduct(): Product o createProduct(): Product o doStuff(): void o doStuff(): void v Dependency inversion principle

var product: Product B
if (productType.equals("A")) {

product = ProductA() (© creator @ Product
} else if (productType.equals("B")) { - -
product = ProductB() \

} ~o operation(productType: String): void o doStuff(): void
product.doStuff() 3 T~ ﬁ A
1 \\ ,1
\ '*" ,I 1]
1 \\ # I
' ~ ,’ |
\ >7 I
\ e ~ . 1
! - - I
h | -7 A 1
© ProductA © ProductB
e doStuff(): void e doStuff(): void

18
Demo: https://github.com/pengyunie/CS446Demo1251/tree/main/app/src/main/java/ca/uwaterloo/cs446/dp/factorymethod

https://github.com/pengyunie/CS446Demo1251/tree/main/app/src/main/java/ca/uwaterloo/cs446/dp/factorymethod

Abstract Factory: Motivation and Intent

* Motivation:
* we want to create objects of (some subclasses of) several abstract classes (e.g., following a theme)
* we don’t care which subclasses are used

* |Intent:

* provide an interface for creating families of related/dependent objects without specifying their
concrete classes

Coffee
Chair Sofa Table
Art Deco @ @ ﬁ

Victorian

& &
Modern j;}; g

Image source: https://refactoring.guru/design-patterns/abstract-factory

20

Abstract Factory: Solution

(© client

o factory: AbstractFactory

@ AbstractFactory

o operation(): void

e constructor(factory: AbstractFactory)

o createProductA(): ProductA
o createProductB(): ProductB

/

© ConcreteFactory1

N\

© ConcreteFactory?2

o createProductA(): ProductA
o createProductB(): ProductB

e createProductA(): ProductA
o createProductB(): ProductB

I Ay
At
Ay

N
©ProductA2 ©ProductB2

scaling up the factory method
design pattern

21

Demo: https://github.com/pengyunie/CS446Demo1251/tree/main/app/src/main/java/ca/uwaterloo/cs446/dp/abstractfactory

https://github.com/pengyunie/CS446Demo1251/tree/main/app/src/main/java/ca/uwaterloo/cs446/dp/abstractfactory

Agenda (recap)

* Design patterns introduction, benefits, category

* Creational design patterns
* Singleton
* Factory Method
* Abstract Factory

* Review P4: lteration 2 Demo requirements

22

https://pengyunie.github.io/cs446-1251/docs/project/p4/

	Slide 1: Software Design & Architecture Design Patterns/ Creational Design Patterns
	Slide 2: Agenda
	Slide 3: Design Patterns Introduction
	Slide 4: Design Patterns Introduction
	Slide 5: Design Patterns Introduction (cont.)
	Slide 6: Design Patterns Benefits (1)
	Slide 7: Design Pattern Benefits (2)
	Slide 8: Design Patterns Benefits (3)
	Slide 9: Design Patterns Benefits (4)
	Slide 10: Design Patterns Resources
	Slide 11: Design Patterns Categories
	Slide 12: Singleton
	Slide 13: Singleton: Motivation and Intent
	Slide 14: Singleton: Solution
	Slide 15: Factory Method
	Slide 16: Factory Method: Motivation and Intent
	Slide 17: Factory Method: Solution
	Slide 18: Factory Method: Solution (cont.)
	Slide 19: Abstract Factory
	Slide 20: Abstract Factory: Motivation and Intent
	Slide 21: Abstract Factory: Solution
	Slide 22: Agenda (recap)

