
Software Design & Architecture
Design Patterns/

Creational Design Patterns

Pengyu Nie

Acknowledgements: slides adapted from previous versions by Mei Nagappan and Shane McIntosh, which are adapted from previous versions by Zhen Ming
Jiang, Ahmed E. Hassan, Reid Holmes.

Agenda

• Design patterns introduction, benefits, category

• Creational design patterns
• Singleton
• Factory Method
• Abstract Factory

2

Design Patterns Introduction

3

Design Patterns Introduction

• Reusable solutions to common problems in
object-oriented programming
• A design pattern typically involves a small set of classes co-operating to

achieve a desired end
• This is done via adding a level of indirection in some clever way, and
• The new improved solution provides the small functionality as an existing

approach, but in the some more desirable way
(elegance, efficiency, adaptability)

4

Design Patterns Introduction (cont.)

• Think of design patterns as…
• high-level programming abstractions
• a form of code reuse (experience reuse)

5

Software
Architecture

Design Patterns

OOP (classes, interfaces,
modules, information

hiding)

Basics (data structures, algorithms,
tools and language details)

Design Patterns Benefits (1)

• Leveraging existing design knowledge: other people have faced
similar situations

6
Image source: https://i1.wp.com/www.roofcalc.net/wp-content/uploads/2014/06/Roof-Types-Diagram.png

Design Pattern Benefits (2)

• Design patterns give developers a
shared vocabulary as well as a
shared code experience

7
Image source: Eric Freeman and Elisabeth Robson. Head First Design Patterns.

Design Patterns Benefits (3)

• Enhancingg flexibility for change: when maintainer looks at the
code and design patterns choices, they know what changes they
can make without breaking the design

8
Image source: https://i1.wp.com/www.roofcalc.net/wp-content/uploads/2014/06/Roof-Types-Diagram.png

Design Patterns Benefits (4)

• Design new systems using higher-level abstractions than variables,
procedures, and classes

• Understand relative tradeoffs, appropriateness, (dis)advantages of
patterns

• Communicate about systems with other developers

• Give guidance in resolving non-functional requirements and trade-offs

• Avoid known traps, pitfalls, and temptations

• Ease restructuring, refactoring

• Foster coherent, directed system evolution and maintenance

9

Design Patterns Resources

10

“Gang of Four” Design Patterns Head First Design Patterns

Online resources
• https://refactoring.guru/design-patterns
• https://www.geeksforgeeks.org/software

-design-patterns/
• https://hillside.net/patterns/
• etc.

https://refactoring.guru/design-patterns
https://hillside.net/patterns/
https://hillside.net/patterns/
https://hillside.net/patterns/

Design Patterns Categories

• Creational: concern the process of object creation
• Singleton, Factory Method, Abstract Factory,

Builder, Prototype, Object Pool

• Structural: concern the process of assembling objects and classes
• Adapter, Composite, Decorator,

Façade, Bridge, Flyweight, Proxy

• Behavioral: concern the interaction between classes or objects
• Observer, Strategy, Template Method,

Iterator, State, Chain of Responsibility,
Command, Mediator, Memento

11

today

design patterns 2

design patterns 3

design patterns 4 – your pick from the remaining ones

Singleton

12

Singleton: Motivation and Intent

• Motivation: some classes must only have one instance
(e.g., file system, database connection, window manager)

• Intent: ensure a class has only one instance; provide a global point of access

13
Image source: Eric Freeman and Elisabeth Robson. Head First Design Patterns.

Singleton: Solution

14

class Singleton private constructor() {
 companion object {
 private var instance: Singleton? = null
 fun getInstance(): Singleton {
 if (instance == null) { instance == Singleton() }
 return instance!!
 }
 }
 // … (other fields or methods)
}

object Singleton {
 // … (other fields or methods)
}

Kotlin has built-in support for Singleton
with object keyword … or the more traditional way

no public constructor!
instantiation happens only once

Demo: https://github.com/pengyunie/CS446Demo1251/tree/main/app/src/main/java/ca/uwaterloo/cs446/dp/singleton

https://github.com/pengyunie/CS446Demo1251/tree/main/app/src/main/java/ca/uwaterloo/cs446/dp/singleton

Factory Method

15

Factory Method: Motivation and Intent

• Motivation:
• we want to create an object of (a subclass of) an abstract class
• we don’t care which subclass is used

• Intent:
• define an interface for creating objects in the superclass
• but let subclasses alter the type of objects that will be created

16
Image source: https://refactoring.guru/design-patterns/factory-method

Factory Method: Solution

17

factory method

✓ Single responsibility principle
• (abstract) Creator: define the common operation steps
• (concrete) CreatorA/B: define which product being used
• (abstract) Product: declare common interface
• (concrete) ProductA/B: implement each operation

✓ Open-closed principle
• client can extend to CreatorC, ProductC, etc.

Factory Method: Solution (cont.)

18

factory method

✓ Dependency inversion principle

Demo: https://github.com/pengyunie/CS446Demo1251/tree/main/app/src/main/java/ca/uwaterloo/cs446/dp/factorymethod

VS

https://github.com/pengyunie/CS446Demo1251/tree/main/app/src/main/java/ca/uwaterloo/cs446/dp/factorymethod

Abstract Factory

19

Abstract Factory: Motivation and Intent

• Motivation:
• we want to create objects of (some subclasses of) several abstract classes (e.g., following a theme)
• we don’t care which subclasses are used

• Intent:
• provide an interface for creating families of related/dependent objects without specifying their

concrete classes

20
Image source: https://refactoring.guru/design-patterns/abstract-factory

Abstract Factory: Solution

21

scaling up the factory method
design pattern

Demo: https://github.com/pengyunie/CS446Demo1251/tree/main/app/src/main/java/ca/uwaterloo/cs446/dp/abstractfactory

https://github.com/pengyunie/CS446Demo1251/tree/main/app/src/main/java/ca/uwaterloo/cs446/dp/abstractfactory

Agenda (recap)

• Design patterns introduction, benefits, category

• Creational design patterns
• Singleton
• Factory Method
• Abstract Factory

• Review P4: Iteration 2 Demo requirements

22

https://pengyunie.github.io/cs446-1251/docs/project/p4/

	Slide 1: Software Design & Architecture Design Patterns/ Creational Design Patterns
	Slide 2: Agenda
	Slide 3: Design Patterns Introduction
	Slide 4: Design Patterns Introduction
	Slide 5: Design Patterns Introduction (cont.)
	Slide 6: Design Patterns Benefits (1)
	Slide 7: Design Pattern Benefits (2)
	Slide 8: Design Patterns Benefits (3)
	Slide 9: Design Patterns Benefits (4)
	Slide 10: Design Patterns Resources
	Slide 11: Design Patterns Categories
	Slide 12: Singleton
	Slide 13: Singleton: Motivation and Intent
	Slide 14: Singleton: Solution
	Slide 15: Factory Method
	Slide 16: Factory Method: Motivation and Intent
	Slide 17: Factory Method: Solution
	Slide 18: Factory Method: Solution (cont.)
	Slide 19: Abstract Factory
	Slide 20: Abstract Factory: Motivation and Intent
	Slide 21: Abstract Factory: Solution
	Slide 22: Agenda (recap)

