Software Design & Architecture

Design Patterns/
Structural Design Patterns

Pengyu Nie

Acknowledgements: slides adapted frmus versions by Mei Nagappan and Shane Mclntosh, which are adapted from previous versions by Zhe;\

Jiang, Ahmed E. Hassan, Reid Holmes.

Design Patterns Categories

* Creational: concern the process of object creation

* Singleton, Factory Method, Abstract Factory, .

Builder, Prototype, Object Pool

sign patterns 1

* Structural: concern the process of assembling objects and classes

Adapter, Composite, Decorator,

Facade, Bridge, Flyweight, Proxy

today

* Behavioral: concern the interaction between classes or objects

Observer, Strategy, Template Method,| design patterns 3
lterator, State, Chain of Responsibility,

Command, Mediator, Memento

design patterns 4 —your pick from the remaining ones

2

Adapter: Motivation and Intent

 Motivation:

* we need to interact with objects of a particular class that is incompatible with the
current class defined in the client code

* we do not want to (or more often, cannot) change the class to be used
(e.g., they are defined in third-party libraries)

* |Intent: convert the interface of a class into another interface
British Wall Qutlet

AC Power Adapter

US Standard AC Plug

The US laptop expects
another interface.

T
T\\C '%\'*)SE;CC ;0" %g\;b'\‘.‘) YOW
one weee

The adapter tonverts one
interface into another.

Image source: Eric Freeman and Elisabeth Robson. Head First Design Patterns.

Adapter: Solution

-©C“ent, . Targetinterface

+request()

© Adaptee

+translatedRequest()

-adaptee: Adaptee

+request()

aggregation relationship

v' Open-closed principle

Demo: https://github.com/pengyunie/CS446Demo1251/tree/main/app/src/main/java/ca/uwaterloo/cs446/dp/adapter

https://github.com/pengyunie/CS446Demo1251/tree/main/app/src/main/java/ca/uwaterloo/cs446/dp/adapter

Composite: Motivation and Intent

 Motivation:

* applications that have recursive groupings of primitives and containers
(e.g., basic shapes (lines, circle, text) and compound shapes)
(e.g., directories and files)

* clienttreat containers and primitives in the same way

* Intent: compose objects into tree structures; define a shared interface

Complex Q%/\

order
FEDEL
<17

i Ne

&oo

Hammer

Phone Headphones Charger

Image source: https://refactoring.guru/design-patterns/composite

https://refactoring.guru/design-patterns/composite

Composite: Solution

F©Clientq (B) component

+operation()

v’ Liskov substitution principle

© Composite

© Leaf -children: List<Component>

for (child in children) {
+Dperatiﬂn() e i = — .- child.operation()

+add(c: Component) i
+remove(c: Component)

+operation()

Demo: https://github.com/pengyunie/CS446Demo1251/tree/main/app/src/main/java/ca/uwaterloo/cs446/dp/composite

https://github.com/pengyunie/CS446Demo1251/tree/main/app/src/main/java/ca/uwaterloo/cs446/dp/composite

Decorator: Motivation and Intent

* Motivation: extend an object’s functionality dynamically at runtime
(vs. inheritance that extend functionality statically at compile time)

* Intent: provide a flexible alternative to inheritance; add additional
responsibilities dynamically to an object

2% Milk - 1 +
Silk® Almond Beverage 0 +

Chobani® Oat Beverage 0 +

Sweeteners 1Sugar ~
Brewed Coffee Sugar - 1+

$1.83 « 4 Cals
Sweetener 0 +

10

Image source: https://www.timhortons.ca/menu

https://www.timhortons.ca/menu

Decorator: Solution

m @Componenf

+operation()

©ConcreteComponent @ Decorator

-component: Component

+operation()

+operation() —.. —.. —..

/d

©ConcreteDecoratorA

\

©Concrete DecoratorB

+operation()
+addedBehavior()

-addedState

+operation()

v’ Liskov substitution principle
v' Open-closed principle

— -» component.operation()

11

Demo: https://github.com/pengyunie/CS446Demo1251/tree/main/app/src/main/java/ca/uwaterloo/cs446/dp/decorator

https://github.com/pengyunie/CS446Demo1251/tree/main/app/src/main/java/ca/uwaterloo/cs446/dp/decorator

Agenda (recap)

* Structural design patterns
* Adapter
* Composite
* Decorator

12

	Slide 1: Software Design & Architecture Design Patterns/ Structural Design Patterns
	Slide 2: Design Patterns Categories
	Slide 3: Adapter
	Slide 4: Adapter: Motivation and Intent
	Slide 5: Adapter: Solution
	Slide 6: Composite
	Slide 7: Composite: Motivation and Intent
	Slide 8: Composite: Solution
	Slide 9: Decorator
	Slide 10: Decorator: Motivation and Intent
	Slide 11: Decorator: Solution
	Slide 12: Agenda (recap)

