
Software Design & Architecture
Design Patterns/

Structural Design Patterns

Pengyu Nie

Acknowledgements: slides adapted from previous versions by Mei Nagappan and Shane McIntosh, which are adapted from previous versions by Zhen Ming
Jiang, Ahmed E. Hassan, Reid Holmes.

Design Patterns Categories

• Creational: concern the process of object creation
• Singleton, Factory Method, Abstract Factory,

Builder, Prototype, Object Pool

• Structural: concern the process of assembling objects and classes
• Adapter, Composite, Decorator,

Façade, Bridge, Flyweight, Proxy

• Behavioral: concern the interaction between classes or objects
• Observer, Strategy, Template Method,

Iterator, State, Chain of Responsibility,
Command, Mediator, Memento

2

design patterns 1

today

design patterns 3

design patterns 4 – your pick from the remaining ones

Adapter

3

Adapter: Motivation and Intent

• Motivation:
• we need to interact with objects of a particular class that is incompatible with the

current class defined in the client code
• we do not want to (or more often, cannot) change the class to be used

(e.g., they are defined in third-party libraries)

• Intent: convert the interface of a class into another interface

4
Image source: Eric Freeman and Elisabeth Robson. Head First Design Patterns.

Adapter: Solution

5

aggregation relationship

Demo: https://github.com/pengyunie/CS446Demo1251/tree/main/app/src/main/java/ca/uwaterloo/cs446/dp/adapter

✓ Open-closed principle

https://github.com/pengyunie/CS446Demo1251/tree/main/app/src/main/java/ca/uwaterloo/cs446/dp/adapter

Composite

6

Composite: Motivation and Intent

• Motivation:
• applications that have recursive groupings of primitives and containers

(e.g., basic shapes (lines, circle, text) and compound shapes)
(e.g., directories and files)

• client treat containers and primitives in the same way

• Intent: compose objects into tree structures; define a shared interface

7
Image source: https://refactoring.guru/design-patterns/composite

https://refactoring.guru/design-patterns/composite

Composite: Solution

8
Demo: https://github.com/pengyunie/CS446Demo1251/tree/main/app/src/main/java/ca/uwaterloo/cs446/dp/composite

for (child in children) {
 child.operation()
}

✓ Liskov substitution principle

https://github.com/pengyunie/CS446Demo1251/tree/main/app/src/main/java/ca/uwaterloo/cs446/dp/composite

Decorator

9

Decorator: Motivation and Intent

• Motivation: extend an object’s functionality dynamically at runtime
(vs. inheritance that extend functionality statically at compile time)

• Intent: provide a flexible alternative to inheritance; add additional
responsibilities dynamically to an object

10
Image source: https://www.timhortons.ca/menu

https://www.timhortons.ca/menu

Decorator: Solution

11
Demo: https://github.com/pengyunie/CS446Demo1251/tree/main/app/src/main/java/ca/uwaterloo/cs446/dp/decorator

component.operation()

✓ Liskov substitution principle
✓ Open-closed principle

https://github.com/pengyunie/CS446Demo1251/tree/main/app/src/main/java/ca/uwaterloo/cs446/dp/decorator

Agenda (recap)

• Structural design patterns
• Adapter
• Composite
• Decorator

12

	Slide 1: Software Design & Architecture Design Patterns/ Structural Design Patterns
	Slide 2: Design Patterns Categories
	Slide 3: Adapter
	Slide 4: Adapter: Motivation and Intent
	Slide 5: Adapter: Solution
	Slide 6: Composite
	Slide 7: Composite: Motivation and Intent
	Slide 8: Composite: Solution
	Slide 9: Decorator
	Slide 10: Decorator: Motivation and Intent
	Slide 11: Decorator: Solution
	Slide 12: Agenda (recap)

