
Software Design & Architecture
Design Patterns/

Behavioral Design Patterns

Pengyu Nie

Acknowledgements: slides adapted from previous versions by Mei Nagappan and Shane McIntosh, which are adapted from previous versions by Zhen Ming
Jiang, Ahmed E. Hassan, Reid Holmes.

Design Patterns Categories

• Creational: concern the process of object creation
• Singleton, Factory Method, Abstract Factory,

Builder, Prototype, Object Pool

• Structural: concern the process of assembling objects and classes
• Adapter, Composite, Decorator,

Façade, Bridge, Flyweight, Proxy

• Behavioral: concern the interaction between classes or objects
• Observer, Strategy, Template Method,

Iterator, State, Chain of Responsibility,
Command, Mediator, Memento

2

design patterns 1

design patterns 2

today

design patterns 4 – your pick from the remaining ones

Observer

3

Observer: Motivation and Intent

• Motivation:
• a common side-effect of partitioning a system into a collection of cooperating classes is the

need to maintain consistency between related objects

• Intent:
• define a one-to-many dependency between objects
• when one object changes state, all its dependents are notified and updated automatically

4
Image source: https://refactoring.guru/design-patterns/observer

https://refactoring.guru/design-patterns/observer

Observer: Example

5

Observer: Solution

6
Demo: https://github.com/pengyunie/CS446Demo1251/tree/main/app/src/main/java/ca/uwaterloo/cs446/dp/observer

https://github.com/pengyunie/CS446Demo1251/tree/main/app/src/main/java/ca/uwaterloo/cs446/dp/observer

Strategy

7

Strategy: Motivation and Intent

• Motivation:
• a problem with multiple well-defined solutions that conform to a common interface
• client can vary the implementation according to specific needs

• Intent: define a family of related algorithms behind a common interface

8
Image source: https://refactoring.guru/design-patterns/strategy

https://refactoring.guru/design-patterns/strategy

Strategy: Solution

9
Demo: https://github.com/pengyunie/CS446Demo1251/tree/main/app/src/main/java/ca/uwaterloo/cs446/dp/strategy

https://github.com/pengyunie/CS446Demo1251/tree/main/app/src/main/java/ca/uwaterloo/cs446/dp/strategy

Template Method

10

Template Method: Motivation and Intent

• Motivation:
• the ordering of steps in an algorithm is fixed
• the implementations of each step can vary to suite specific needs

(e.g., reading and processing files in different formats)

• Intent: define the skeleton of the algorithm in the superclass, defer some steps
to subclasses

11
Image source: https://refactoring.guru/design-patterns/template-method

https://refactoring.guru/design-patterns/template-method

Template Method: Solution

12
Demo: https://github.com/pengyunie/CS446Demo1251/tree/main/app/src/main/java/ca/uwaterloo/cs446/dp/templatemethod

https://github.com/pengyunie/CS446Demo1251/tree/main/app/src/main/java/ca/uwaterloo/cs446/dp/templatemethod

Agenda (recap)

• Behavioral design patterns
• Observer
• Strategy
• Template method

• P4: Iteration 2 Demo this Wednesday!

13

	Slide 1: Software Design & Architecture Design Patterns/ Behavioral Design Patterns
	Slide 2: Design Patterns Categories
	Slide 3: Observer
	Slide 4: Observer: Motivation and Intent
	Slide 5: Observer: Example
	Slide 6: Observer: Solution
	Slide 7: Strategy
	Slide 8: Strategy: Motivation and Intent
	Slide 9: Strategy: Solution
	Slide 10: Template Method
	Slide 11: Template Method: Motivation and Intent
	Slide 12: Template Method: Solution
	Slide 13: Agenda (recap)

