Software Design & Architecture

Design Patterns/
Behavioral Design Patterns

Pengyu Nie

Acknowledgements: slides adapted frmus versions by Mei Nagappan and Shane Mclntosh, which are adapted from previous versions by Zhe;\

Jiang, Ahmed E. Hassan, Reid Holmes.



Design Patterns Categories

* Creational: concern the process of object creation

* Singleton, Factory Method, Abstract Factory, .

Builder, Prototype, Object Pool

sign patterns 1

* Structural: concern the process of assembling objects and classes
* Adapter, Composite, Decorator, gesjgn patterns 2

Facade, Bridge, Flyweight, Proxy

* Behavioral: concern the interaction between classes or objects

Observer, Strategy, Template Method,

lterator, State, Chain of Responsibility,
Command, Mediator, Memento

today

design patterns 4 —your pick from the remaining ones

2






Observer: Motivation and Intent

e Motivation:

* acommon side-effect of partitioning a system into a collection of cooperating classes is the
need to maintain consistency between related objects

* |Intent:
* define a one-to-many dependency between objects
* when one object changes state, all its dependents are notified and updated automatically

Image source: https://refactoring.guru/design-patterns/observer



https://refactoring.guru/design-patterns/observer

Observer: Example

" lalblc
603010
v 503020

[z 18010110

Observer

requests, modifications




Observer: Solution

© Subject
for (observer in observers) { .
observer.update(this) -observers: List<Observer>
} -state . Observer
+attach(observer: Observer)
/I when state changes: +detach(observer: Observer) +update(context: Subject)
notifyObservers() +notifyObservers() &
+getState() .
~+setState(state) )
:
]
]
I
:

/ state = context.getState()

/I ... handle state change

+update(context: Subject)

Demo: https://github.com/pengyunie/CS446Demo1251/tree/main/app/src/main/java/ca/uwaterloo/cs446/dp/observer



https://github.com/pengyunie/CS446Demo1251/tree/main/app/src/main/java/ca/uwaterloo/cs446/dp/observer




Strategy: Motivation and Intent

* Motivation:
* a problem with multiple well-defined solutions that conform to a common interface
* client canvary the implementation according to specific needs

* Intent: define a family of related algorithms behind a common interface

Image source: https://refactoring.guru/design-patterns/strategy



https://refactoring.guru/design-patterns/strategy

Strategy: Solution

(© client
.Strategy
-strateqgy: Strategy
+setStrategy(strategy: Strategy) +execute()
+executeStrategy() ﬁ §
."KI \\\
©ConcreteStrategyA ©ConcreteStrategyB
+execute() +execute()

Demo: https://github.com/pengyunie/CS446Demo1251/tree/main/app/src/main/java/ca/uwaterloo/cs446/dp/strategy



https://github.com/pengyunie/CS446Demo1251/tree/main/app/src/main/java/ca/uwaterloo/cs446/dp/strategy




Template Method: Motivation and Intent

* Motivation:
* the ordering of steps in an algorithm is fixed

* the implementations of each step can vary to suite specific needs
(e.g., reading and processing files in different formats)

* |Intent: define the skeleton of the algorithm in the superclass, defer some steps
to subclasses

11
Image source: https://refactoring.guru/design-patterns/template-method



https://refactoring.guru/design-patterns/template-method

Template Method: Solution

operations whose implementations @ AbstractClass
are deferred to subclasses

+templateMethod()

operations that are common to rEopT()
all subclasses #op2()

~+op3()
©ConcreteCIassA ©ConcreteClassB
#op1() #op1()
#op2() #op2()

12
Demo: https://github.com/pengyunie/CS446Demo1251/tree/main/app/src/main/java/ca/uwaterloo/cs446/dp/templatemethod



https://github.com/pengyunie/CS446Demo1251/tree/main/app/src/main/java/ca/uwaterloo/cs446/dp/templatemethod

Agenda (recap)

* Behavioral design patterns
* Observer
* Strategy
* Template method

* P4: Iteration 2 Demo this Wednesday!

13



	Slide 1: Software Design & Architecture Design Patterns/ Behavioral Design Patterns
	Slide 2: Design Patterns Categories
	Slide 3: Observer
	Slide 4: Observer: Motivation and Intent
	Slide 5: Observer: Example
	Slide 6: Observer: Solution
	Slide 7: Strategy
	Slide 8: Strategy: Motivation and Intent
	Slide 9: Strategy: Solution
	Slide 10: Template Method
	Slide 11: Template Method: Motivation and Intent
	Slide 12: Template Method: Solution
	Slide 13: Agenda (recap)

