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Design Patterns Categories

• Creational: concern the process of object creation
• Singleton, Factory Method, Abstract Factory,

Builder, Prototype, Object Pool

• Structural: concern the process of assembling objects and classes
• Adapter, Composite, Decorator,

Façade, Bridge, Flyweight, Proxy

• Behavioral: concern the interaction between classes or objects
• Observer, Strategy, Template Method,

Iterator, State, Chain of Responsibility, 
Command, Mediator, Memento
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today – your pick from the remaining ones



Builder
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Builder: Motivation and Intent

• Motivation:
• constructing objects with many parameters or optional components
• using constructors becomes ugly: 

multiple overloading constructors (especially for programming languages like Java); 
hard to validate during construction

• Intent: design a helper class (Builder) to construct objects step-by-step
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Image source: https://refactoring.guru/design-patterns/builder 

https://refactoring.guru/design-patterns/builder


Builder: Solution
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Demo: https://github.com/pengyunie/CS446Demo1251/tree/main/app/src/main/java/ca/uwaterloo/cs446/dp/builder    

https://github.com/pengyunie/CS446Demo1251/tree/main/app/src/main/java/ca/uwaterloo/cs446/dp/builder


Builder: Solution (More Complex Ver.)
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Demo: https://github.com/pengyunie/CS446Demo1251/tree/main/app/src/main/java/ca/uwaterloo/cs446/dp/builder    

director
defines the order of building steps

https://github.com/pengyunie/CS446Demo1251/tree/main/app/src/main/java/ca/uwaterloo/cs446/dp/builder


Prototype
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Prototype: Motivation and Intent

• Motivation:
• constructing objects that are complex or resource-intensive
• the client needs a copy of an existing object

• Intent: provide a registry to access (common) existing objects and an 
interface to clone them
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Image source: https://refactoring.guru/design-patterns/prototype 

https://refactoring.guru/design-patterns/prototype


Prototype: Solution
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Demo: https://github.com/pengyunie/CS446Demo1251/tree/main/app/src/main/java/ca/uwaterloo/cs446/dp/prototype     

Indicate an object of a class can be cloned in 
JVM (including Kotlin and Java)
• implement/extend the Cloneable interface
• override the clone() method to a public one

https://github.com/pengyunie/CS446Demo1251/tree/main/app/src/main/java/ca/uwaterloo/cs446/dp/prototype


Memento (aka Snapshot)
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Memento: Motivation and Intent

• Motivation: we want to capture snapshots of an object’s state, and be able to 
restore previous snapshots

• Intent:
• capture an object’s internal state without violating encapsulation
• allow tracking the evolution of an object’s state
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Image source: https://refactoring.guru/design-patterns/memento 

https://refactoring.guru/design-patterns/memento


Memento: Solution
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Demo: https://github.com/pengyunie/CS446Demo1251/tree/main/app/src/main/java/ca/uwaterloo/cs446/dp/memento     

Client have no access to the internal state

https://github.com/pengyunie/CS446Demo1251/tree/main/app/src/main/java/ca/uwaterloo/cs446/dp/memento


Agenda (recap)

• More design patterns
• Builder
• Prototype
• Memento

• Review P5: Iteration 3 Demo requirements
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