
Software Design & Architecture
Design Patterns/

Builder, Prototype, Memento

Pengyu Nie

Acknowledgements: slides adapted from previous versions by Mei Nagappan and Shane McIntosh, which are adapted from previous versions by Zhen Ming
Jiang, Ahmed E. Hassan, Reid Holmes.

Design Patterns Categories

• Creational: concern the process of object creation
• Singleton, Factory Method, Abstract Factory,

Builder, Prototype, Object Pool

• Structural: concern the process of assembling objects and classes
• Adapter, Composite, Decorator,

Façade, Bridge, Flyweight, Proxy

• Behavioral: concern the interaction between classes or objects
• Observer, Strategy, Template Method,

Iterator, State, Chain of Responsibility,
Command, Mediator, Memento

2

design patterns 1

design patterns 2

design patterns 3

today – your pick from the remaining ones

Builder

3

Builder: Motivation and Intent

• Motivation:
• constructing objects with many parameters or optional components
• using constructors becomes ugly:

multiple overloading constructors (especially for programming languages like Java);
hard to validate during construction

• Intent: design a helper class (Builder) to construct objects step-by-step

4
Image source: https://refactoring.guru/design-patterns/builder

https://refactoring.guru/design-patterns/builder

Builder: Solution

5
Demo: https://github.com/pengyunie/CS446Demo1251/tree/main/app/src/main/java/ca/uwaterloo/cs446/dp/builder

https://github.com/pengyunie/CS446Demo1251/tree/main/app/src/main/java/ca/uwaterloo/cs446/dp/builder

Builder: Solution (More Complex Ver.)

6
Demo: https://github.com/pengyunie/CS446Demo1251/tree/main/app/src/main/java/ca/uwaterloo/cs446/dp/builder

director
defines the order of building steps

https://github.com/pengyunie/CS446Demo1251/tree/main/app/src/main/java/ca/uwaterloo/cs446/dp/builder

Prototype

7

Prototype: Motivation and Intent

• Motivation:
• constructing objects that are complex or resource-intensive
• the client needs a copy of an existing object

• Intent: provide a registry to access (common) existing objects and an
interface to clone them

8
Image source: https://refactoring.guru/design-patterns/prototype

https://refactoring.guru/design-patterns/prototype

Prototype: Solution

9
Demo: https://github.com/pengyunie/CS446Demo1251/tree/main/app/src/main/java/ca/uwaterloo/cs446/dp/prototype

Indicate an object of a class can be cloned in
JVM (including Kotlin and Java)
• implement/extend the Cloneable interface
• override the clone() method to a public one

https://github.com/pengyunie/CS446Demo1251/tree/main/app/src/main/java/ca/uwaterloo/cs446/dp/prototype

Memento (aka Snapshot)

10

Memento: Motivation and Intent

• Motivation: we want to capture snapshots of an object’s state, and be able to
restore previous snapshots

• Intent:
• capture an object’s internal state without violating encapsulation
• allow tracking the evolution of an object’s state

11
Image source: https://refactoring.guru/design-patterns/memento

https://refactoring.guru/design-patterns/memento

Memento: Solution

12
Demo: https://github.com/pengyunie/CS446Demo1251/tree/main/app/src/main/java/ca/uwaterloo/cs446/dp/memento

Client have no access to the internal state

https://github.com/pengyunie/CS446Demo1251/tree/main/app/src/main/java/ca/uwaterloo/cs446/dp/memento

Agenda (recap)

• More design patterns
• Builder
• Prototype
• Memento

• Review P5: Iteration 3 Demo requirements

13

	Slide 1: Software Design & Architecture Design Patterns/ Builder, Prototype, Memento
	Slide 2: Design Patterns Categories
	Slide 3: Builder
	Slide 4: Builder: Motivation and Intent
	Slide 5: Builder: Solution
	Slide 6: Builder: Solution (More Complex Ver.)
	Slide 7: Prototype
	Slide 8: Prototype: Motivation and Intent
	Slide 9: Prototype: Solution
	Slide 10: Memento (aka Snapshot)
	Slide 11: Memento: Motivation and Intent
	Slide 12: Memento: Solution
	Slide 13: Agenda (recap)

