Software Design & Architecture

Testing

Pengyu Nie

Acknowledgements: slides adapted frmus versions by Mei Nagappan and Shane Mclntosh, which are adapted from previous versions by Zhen Mi
Jiang, Ahmed E. Hassan, Reid Holmes.

* Testing basics

* Categories
* by granularity
* by subject
* by methodology

* Testing libraries and techniques (w/ Demo)
* running
* measuring coverage

Revisiting Software Development Lifecycle

Architecture

ebreak down problem space
ecreate subsystems and their communication

Design

efurther decompose each subsystem
ecreate components and their communication (in subsystem)

Implementation
Implementation and testing should

be synchronized efforts...

ecode

or even in the reversed order

. Quality Assurance
(Test-Driven Development, TDD) ua A
stest software against requirements Uto I ated! Deploy nent

evalidate if software meets customer expectations

What is Test and Why?

* “The process of evaluating and verifying that a software product or
application does what it’s supposed to do” (requirements)

* Why
* Prevent bugs (from troubling users of software)
* Ensure software quality
* Improve performance

* Takes ~50% of software development time!

Source: https://www.ibm.com/topics/software-testing

Arrange, Act, Assert

x 1
code under test test case ——— test suite
class TipCalculator { @Test hame
var amount: Double = 0.0 fun testCalculateTip() {
var tipPercent: Double = 0.0 .
Var roundUn- Boolean - false arrange val calculator = TipCalculator()
prepare test inputs calculator.amount = 42.0
fun calculateTip(): Double { | calculator.tipPercent = 10.0
var tip = tipPercent / 100 * amount
if (act
roundUp) { . .
tip = ceil(tip) invoke code under test val tip = calculator.calculateTip()
} |
- rt aka oracl .
, return tip fhsesciex?efte?j fticiiwes assertEquals(expected: 4.2, tip, delta: 1e-6)
} —

Tests by Granularity

E2E tests o)
big tests
(end to end) verifying a end-to-end workflow (user scenario)

“medium tests”
checking the integration between several units

Small test
“small tests” ——k

ifyi Medi
verifying a method or class edium test

Big test

Tests by Subject

* Functional tests
* focus on the business logic and functional requirements

* Ul tests
* focus on the user interface, usually integration/E2E tests

* Performance tests
* focus on checking if code runs efficiently

* Accessibility tests, Compatibility tests, etc.

Tests by Methodology: Regression Tests

* Make sure your existing functionalities are not broken after code changes

vl v2
@ @ @ @ Qo >
fun calculate(fun calculate(
amount: Double, amount: Double,
tipPercent: Double, tipPercent: Double,
) { roundUp: Boolean = false,
return tipPercent / 100 * amount) {
} var tip = tipPercent / 100 * amount
if (roundUp) { tip = ceil(tip) }
return tip
¥
@Test fun testCalculateTip()Y @Test fun testCalculateTip() {° TFun eXiSting regression tests
= pass: &
} } => fail: fix code or fix test

@Test fun testCalculateTipWithRoundUp() { " add new regression tests

}

Tests by Methodology

* Regression tests
* protect existing functionalities from being broken by code changes

* Random tests (fuzzing, monkey tests)
* explore diverse execution paths of the software
* test oracle: not crashing / not violating invariants

* Differential tests
* compare the execution results when running on different devices
* test oracle: they should be the same

* Metamorphic tests
* check the relationships of the outputs when giving a set of related inputs

* testoracle: Pprecond(xl»xz») - Ppostcond(yl: Y2,)

Code Coverage

* Quality metric of your test suites
* target 80-90%, if not 100%

* What % of code elements is “covered” (executed) during tests?
* line coverage 3/4lines=75%

* branch coverage 1 /2 branches=50%

==t

=

A\

AP

o

TipCalculator {
: Double =
: Double =

p: Boolean =

(): Double {

var tip = tipPercent / 100 * amount

if (roundUp) {

tip = ceil(tip)
s
J

return tip

@Test

fun testCalculateTip() {
val calculator = TipCalculator()
calculator.amount = 42.0

calculator.tipPercent 10.0

val tip = calculator.calculateTip()

assertEquals(expected: 4.2, tip,

delta: 1e-6)

10

Testing in Android

* Unit tests
* directory: src/test/java

* library: JUnit https://junit.org/junit4/ (ver. 4) or https://junit.org/junits/ (ver. 5)
* doc: https://developer.android.com/training/testing/local-tests

* Ul tests (instrumented tests)
* directory: src/androidTest/java

* library: Jetpack Compose
https://developer.android.com/develop/ui/compose/testing/testing-cheatsheet

* doc: https://developer.android.com/training/testing/instrumented-tests

e Tutorials

* https://developer.android.com/codelabs/basic-android-kotlin-compose-test-viewmodel
» https://developer.android.com/codelabs/basic-android-kotlin-compose-write-automated-tests

11

https://junit.org/junit4/
https://junit.org/junit5/
https://developer.android.com/training/testing/local-tests
https://developer.android.com/develop/ui/compose/testing/testing-cheatsheet
https://developer.android.com/training/testing/instrumented-tests
https://developer.android.com/codelabs/basic-android-kotlin-compose-test-viewmodel
https://developer.android.com/codelabs/basic-android-kotlin-compose-write-automated-tests

Demo — setup unit tests run in Android Studio

A Run/Debug Configurations
+ - @-' C1 Nz
Add New Configuration

=4 Android App

B8 Android Baseline Profile
4 Android Instrumented Tests
& App Engine DevAppServer
[] Application

@ Compose Preview

[2 Compound

(7 Gradle

[G] Groovy

(%) JAR Application

[Java Scratch

b JUnit

[X Kotlin

[€ Kotlin script (Beta)

< Plugin

[£} Remote JVM Debug

=) Shell Script

Ne TestNG

& Wear OS Complication

& Wear 0S Tile

M \Wear NS Watch Fare

Edit configuration templates...

?

><

Run/Debug Configurations
+ — 80

v Android App
= app

<

£ UITests
v (&7 Gradle
&7 UnitTests

Edit configuration templates...

?

¥ Android Instrumented Tests

X
Name: UnitTests [] Store as project file
Run Modify options v Alt+M
testDebugUnitTest Bl
Press Alt for field hints
Gradle project: CS446Demo1251 m)

Environment variables: Environment variables

Separate variables with semicolon: VAR=value; VAR1=valuel

Open run/debug tool window when started = Debug Gradle scripts =

[>Run ~ Cancel Apply

12

Demo - setup Ul tests run in Android Studio

A Run/Debug Configurations A Run/Debug Configurations X
+ — &8 0z 12 + — 8 &3
. Name: UlTests Allow multiple instances \:\ Store as project file
Add New Configuration e ~ = Android App
=app G | Miscell Deb
»< Android Al enera iscellaneous ebugger
neroid App ~ * Android Instrumented Tests
Bfs Android Baseline Profile s
UlTests . y
~* Android Instrumented Tests Module: Cg Cs446Demo1251.app
~ (&7 Gradle
@ App Engine DevAppServer 9 UnitTests Test: @ AllinModule () AlljnPackage () Clags () Method
Application
£ App Regex:
%) Compose Preview
[z Compound Instrumentation class: androidx.test.runner.AndroidJUnitRunner
&7 Gradle Instrumentation arguments:
[©) Groovy
(& JAR Application Deployment Target Options
=0
(5 Java Scratch Target: Use the device/snapshot drop down ~
4P JUnit
[X Kotlin
[€ Kotlin script (Beta)
<= Plugin
[£4Remote JVM Debug
=) Shell Script
NG TestNG
& Wear OS Complication
& Wear OS Tile + Before launch
D Waar DS Watrh Faco +
. . X . . . 4 Gradle-aware Make
Edit configuration templates... Edit configuration templates...
? ? > Run ~ Cancel Apply

13

Demo - run tests with coverage

(2 Run 'UnitTests' with Coverage =g L_T Coverage UnitTests 3 = S
Configuration v g FETTCEY, <
Edit... ‘ Element ~ Class, % Method,% Line, % Branch, % a
Delete RN B3 cauwaterloo cs446 7% (3/8) 33% (7/21) 26% (30/118) 4% (5/120) =
r‘. ~ [tiptime 42% (3/7) 36% (7/19) 27% (30/10) 4% (5/120) rE.
= (@ TipCalculator 100% (1/1) 100% (2/2) 85% (6/7) 50% (1/2)
[X TipTimeScreenkt 0% (0/4) 0% (0/11) 0% (0/75) 0% (0/106) +
(@ TipTimeUiState 100% (1/1) 100% (1/1) 100% (4/4) 100% (0/0)
@ TipTimeViewModel 100% (1/1) 80% (4/5) 83% (20/24) 33% (4/12) @
@ MainActivity 0% (/) 0% (0/2) 0% (0/a) 100% (0/0)
package ca.uwaterloo.cs446.tiptime
import kotlin.math.ceil
class TipCalculator(
var amount: Double = 0.0,
var tipPercent: Double = 0.0,
var roundUp: Boolean = false,
fun calculateTip(): Double {
11 var tip = tipPercent / 108 * amount
12 if (roundup) {
13 tip = ceil(tip)
14 }
15 return tip
16 }
17 }

14

Agenda (recap)

* Testing basics

* Categories
* by granularity: unit, integration, e2e
* by subject: functional, Ul, performance
* by methodology: regression, random, differential, metamorphic

* Testing libraries and techniques (w/ Demo)
* running
* measuring coverage

15

	Slide 1: Software Design & Architecture Testing
	Slide 2: Agenda
	Slide 3: Revisiting Software Development Lifecycle
	Slide 4: What is Test and Why?
	Slide 5: Arrange, Act, Assert
	Slide 6: Tests by Granularity
	Slide 7: Tests by Subject
	Slide 8: Tests by Methodology: Regression Tests
	Slide 9: Tests by Methodology
	Slide 10: Code Coverage
	Slide 11: Testing in Android
	Slide 12: Demo – setup unit tests run in Android Studio
	Slide 13: Demo – setup UI tests run in Android Studio
	Slide 14: Demo – run tests with coverage
	Slide 15: Agenda (recap)

