
Software Design & Architecture

Testing

Pengyu Nie

Acknowledgements: slides adapted from previous versions by Mei Nagappan and Shane McIntosh, which are adapted from previous versions by Zhen Ming
Jiang, Ahmed E. Hassan, Reid Holmes.

Agenda

• Testing basics

• Categories
• by granularity
• by subject
• by methodology

• Testing libraries and techniques (w/ Demo)
• running
• measuring coverage

2

Revisiting Software Development Lifecycle

3

Requirements
•users, stakeholders
•functional & non-functional

Architecture
•break down problem space
•create subsystems and their communication

Design
•further decompose each subsystem
•create components and their communication (in subsystem)

Implementation
•code

Quality Assurance
•test software against requirements
•validate if software meets customer expectations

Deployment

Planning

Implementation and testing should
be synchronized efforts…

or even in the reversed order
(Test-Driven Development, TDD) Automated!

What is Test and Why?

• “The process of evaluating and verifying that a software product or
application does what it’s supposed to do” (requirements)

• Why
• Prevent bugs (from troubling users of software)
• Ensure software quality
• Improve performance

• Takes ~50% of software development time!

4
Source: https://www.ibm.com/topics/software-testing

Arrange, Act, Assert

5

code under test test case test suite
* 1

name

arrange
prepare test inputs

act
invoke code under test

assert aka oracles
check expected outcomes

Tests by Granularity

E2E tests
(end to end)

Integration tests

Unit tests

6

“small tests”
verifying a method or class

“medium tests”
checking the integration between several units

“big tests”
verifying a end-to-end workflow (user scenario)

Tests by Subject

• Functional tests
• focus on the business logic and functional requirements

• UI tests
• focus on the user interface, usually integration/E2E tests

• Performance tests
• focus on checking if code runs efficiently

• Accessibility tests, Compatibility tests, etc.

7

Tests by Methodology: Regression Tests

• Make sure your existing functionalities are not broken after code changes

8

fun calculate(
 amount: Double,
 tipPercent: Double,
) {
 return tipPercent / 100 * amount
}

fun calculate(
 amount: Double,
 tipPercent: Double,
 roundUp: Boolean = false,
) {
 var tip = tipPercent / 100 * amount
 if (roundUp) { tip = ceil(tip) }
 return tip
}

@Test fun testCalculateTip() {
 …
}

v1 v2

@Test fun testCalculateTip() {
 …
}

run existing regression tests
➔ pass:
➔ fail: fix code or fix test

@Test fun testCalculateTipWithRoundUp() {
 …
}

add new regression tests

Tests by Methodology

• Regression tests
• protect existing functionalities from being broken by code changes

• Random tests (fuzzing, monkey tests)
• explore diverse execution paths of the software
• test oracle: not crashing / not violating invariants

• Differential tests
• compare the execution results when running on different devices
• test oracle: they should be the same

• Metamorphic tests
• check the relationships of the outputs when giving a set of related inputs
• test oracle: 𝑃𝑝𝑟𝑒𝑐𝑜𝑛𝑑 𝑥1, 𝑥2, … → 𝑃𝑝𝑜𝑠𝑡𝑐𝑜𝑛𝑑 𝑦1, 𝑦2, …

9

Code Coverage

• Quality metric of your test suites
• target 80-90%, if not 100%

• What % of code elements is “covered” (executed) during tests?
• line coverage
• branch coverage

10

roundUp?

return tip

tip = ceil(tip)

var tip = …

3 / 4 lines = 75%

1 / 2 branches = 50%

Testing in Android

• Unit tests
• directory: src/test/java
• library: JUnit https://junit.org/junit4/ (ver. 4) or https://junit.org/junit5/ (ver. 5)
• doc: https://developer.android.com/training/testing/local-tests

• UI tests (instrumented tests)
• directory: src/androidTest/java
• library: Jetpack Compose

https://developer.android.com/develop/ui/compose/testing/testing-cheatsheet
• doc: https://developer.android.com/training/testing/instrumented-tests

• Tutorials
• https://developer.android.com/codelabs/basic-android-kotlin-compose-test-viewmodel
• https://developer.android.com/codelabs/basic-android-kotlin-compose-write-automated-tests

11

https://junit.org/junit4/
https://junit.org/junit5/
https://developer.android.com/training/testing/local-tests
https://developer.android.com/develop/ui/compose/testing/testing-cheatsheet
https://developer.android.com/training/testing/instrumented-tests
https://developer.android.com/codelabs/basic-android-kotlin-compose-test-viewmodel
https://developer.android.com/codelabs/basic-android-kotlin-compose-write-automated-tests

Demo – setup unit tests run in Android Studio

12

Demo – setup UI tests run in Android Studio

13

Demo – run tests with coverage

14

Agenda (recap)

• Testing basics

• Categories
• by granularity: unit, integration, e2e
• by subject: functional, UI, performance
• by methodology: regression, random, differential, metamorphic

• Testing libraries and techniques (w/ Demo)
• running
• measuring coverage

15

	Slide 1: Software Design & Architecture Testing
	Slide 2: Agenda
	Slide 3: Revisiting Software Development Lifecycle
	Slide 4: What is Test and Why?
	Slide 5: Arrange, Act, Assert
	Slide 6: Tests by Granularity
	Slide 7: Tests by Subject
	Slide 8: Tests by Methodology: Regression Tests
	Slide 9: Tests by Methodology
	Slide 10: Code Coverage
	Slide 11: Testing in Android
	Slide 12: Demo – setup unit tests run in Android Studio
	Slide 13: Demo – setup UI tests run in Android Studio
	Slide 14: Demo – run tests with coverage
	Slide 15: Agenda (recap)

