
Software Design & Architecture

Continuous Integration &
Release Engineering

Pengyu Nie

Acknowledgements: slides adapted from previous versions by Mei Nagappan and Shane McIntosh, which are adapted from previous versions by Zhen Ming
Jiang, Ahmed E. Hassan, Reid Holmes.

Agenda

• Release pipeline

• Continuous integration

• Release engineering
• Green-blue deployment
• Canary releases

2

Revisiting Software Development Lifecycle

3

Requirements
•users, stakeholders
•functional & non-functional

Architecture
•break down problem space
•create subsystems and their communication

Design
•further decompose each subsystem
•create components and their communication (in subsystem)

Implementation
•code

Quality Assurance
•test software against requirements
•validate if software meets customer expectations

Deployment

Planning

Continuous Integration

Release Engineering

Release Pipieline

4

Integrate

Build

Deploy

Monitor

Styles of Integration (1)

• Pre-release integration
• components are implemented and tested individually (unit tests)
• integration happens once after all features are done (integration tests)

• The integration “phase” can become chaotic and take long time

5

Styles of Integration (2)

• Feature branches
• each developer pulls from mainline, implements a feature,

then pushes the changes to mainline
• integration happens more frequently (during pull and push)

6

Styles of Integration (3)

• Continuous integration
• pull and push changes continuous (e.g., every day!)
• integration happens more frequently, but each becomes easier

7

Continuous Integration

• Put everything in a version controlled mainline
• Everyone pushes commits to the mainline every day
• Everyone can see what’s happening

• Automate the build
• Include tests
• Keep the build fast

• Every push to mainline should trigger a build
• Fix broken builds immediately

• Automate deployment

8
https://martinfowler.com/articles/continuousIntegration.html

https://martinfowler.com/articles/continuousIntegration.html

Continuous Integration – Pros and Cons

• Put everything in a version controlled mainline
• Everyone pushes commits to the mainline every day
• Everyone can see what’s happening

• Automate the build
• Include tests
• Keep the build fast

• Every push to mainline should trigger a build
• Fix broken builds immediately

• Automate deployment

9

+ Reduce time and effort wasted in integration

+ Less bugs

+ Refactoring becomes easier

+ Release becomes easier

- You need to be committed to the project
(more suitable for industry projects,
 less suitable for open-source projects)

- Automation is the key

Setup Continuous Integration

10

• Put everything in a version controlled mainline
• Everyone pushes commits to the mainline every day
• Everyone can see what’s happening

• Automate the build
• Include tests
• Keep the build fast

• Every push to mainline should trigger a build
• Fix broken builds immediately

• Automate deployment
?

(simple) demo: https://github.com/pengyunie/CS446Demo1251/actions
more examples:
• https://github.com/amirisback/automated-build-android-app-with-github-action (including automated deployment)
• https://github.com/topics/android-ci

https://github.com/pengyunie/CS446Demo1251/actions
https://github.com/amirisback/automated-build-android-app-with-github-action
https://github.com/topics/android-ci

Release Pipieline (Part 2)

11

Integrate

Build

Deploy

Monitor

• Green-blue deployment
• Canary release

Blue-Green Deployment

• Challenge: downtime during “cut over”
• When a release candidate is promoted from testing to production environments
• Bring servers down and update them? Too costly!

12

current version

new version
(under development)

https://www.gremlin.com/blog/the-cost-of-downtime

Disaster in Deployment

• Disasters: catastrophic failure of hardware/software components
needed to deliver a service

• Two schools of thought about how to deal with disasters
• Disaster prevention: design and deploy systems in a way that disasters

cannot happen
• Disaster readiness: design and deploy systems in a way that should a

disaster occur, the system can quickly (and automatically) recover

13

disaster recovery

Blue-Green Deployment as Disaster Recovery Plan

14

• Send requests to both blue and green deployments during the cut over
• If the new environment fails, the previously running environment can

resume the operation seemlessly

Canary Release

• Origin: canary-in-the-coal-mine approach

• The problem:
• coal mines often contain noxious gases
• miners still need to extract the coal
• how can we ensure miner safety?

• An “early warning” system:
• Physiologist J. S. Haldane proposed the idea of brining a caged

bird into the mine
• Should the mine contain poisonous fumes, the bird will die,

giving the miners some time to escape

15

Canary Release

• Applying the approach to software deployment…

• The problem:
• each software release introduces some risk
• how can we minimize the risk of deploying broken releases to a large

userbase?

• The solution:
• canary releases!
• if the canary dies, flee the scene!

16

Canary Release

• Partial, time-limited deployment of a change in a service

• Followed by an evaluation of the safety of the changed service

• Production may then:
• roll forward (to a bigger population)
• roll backwards (undo the change)
• alert an operation (e.g., email)

• Called “staged rollouts” on Google Play

17

https://support.google.com/googleplay/android-developer/answer/6346149?hl=en&ref_topic=7072031&sjid=6102016804908517647-NC#zippy=%2Cselect-staged-rollout-percentage%2Crelease-a-staged-rollout-to-specific-countries%2Cincrease-your-staged-rollout-percentage%2Chalt-a-staged-rollout%2Cresume-a-staged-rollout

Agenda (recap)

• Release pipeline

• Continuous integration

• Release engineering
• Green-blue deployment
• Canary releases

18

Plan for the next few weeks (end of term!)

19

review of final presentation/report requirements

review of final exam practice questions

• one page cheat sheet allowed
• assigned seats

~Apr 11: release of project grades

~Apr 27: release of exam grades

Apr 29: last day to rebuttal any grading issue

	Slide 1: Software Design & Architecture Continuous Integration & Release Engineering
	Slide 2: Agenda
	Slide 3: Revisiting Software Development Lifecycle
	Slide 4: Release Pipieline
	Slide 5: Styles of Integration (1)
	Slide 6: Styles of Integration (2)
	Slide 7: Styles of Integration (3)
	Slide 8: Continuous Integration
	Slide 9: Continuous Integration – Pros and Cons
	Slide 10: Setup Continuous Integration
	Slide 11: Release Pipieline (Part 2)
	Slide 12: Blue-Green Deployment
	Slide 13: Disaster in Deployment
	Slide 14: Blue-Green Deployment as Disaster Recovery Plan
	Slide 15: Canary Release
	Slide 16: Canary Release
	Slide 17: Canary Release
	Slide 18: Agenda (recap)
	Slide 19: Plan for the next few weeks (end of term!)

