
Software Design & Architecture

Non Functional Requirements

Winter 2026. Instructor: Pengyu Nie.
Acknowledgements: slides adapted from previous versions by Mei Nagappan and Shane McIntosh, which are adapted from previous versions by Zhen Ming Jiang, Ahmed E. Hassan, Reid Holmes.

Agenda
• Functional vs. non-functional requirements
• Types of non-functional requirements

Non-Functional Requirements

• Functional requirements (features)
• what the system is supposed to do

• Non-functional requirements (constraints)
• what the system is supposed to be

2

Usability: A first-time user shall be
able to request a ride in ≤ 3 steps

Efficiency: Driver location shall
refresh at least every 2 seconds

The app shall allow users to
request a ride

The app shall display the
driver’s location

FR vs NFR

• Products are sold based on their functional requirements
• ride sharing, messaging, video streaming; cell phone, car, tent

• However, non-functional requirements play a critical role in perception
• “This app keeps crashing” (reliability)
• “It’s too slow” (efficiency)
• “It doesn’t work with …” (compatibility)

• Non-functional requirements are differentiators for similar products

3

vs vs

How to write requirements?

• Ask stakeholders / consider the questions they may ask

• Customers: features, user experience

• Management: are we on schedule?

• Developers: who is responsible for implementing what?

• Sales: can we claim it can do this task?

• QA: what teams do we talk to about defects?

• DevOps: where should this component be deployed?

• Support: which QA team signed off on this?

• Maintenance: how can we add this feature?

4

Types of NFRs

5

Usability

Accessibility

Efficiency

Scalability

Availability

Reliability

Robustness

Fault-tolerance

Survivability

Security

Privacy

Safety
Evovability

Readability

Complexity

Portability

Heterogeneity

user experience

performance

continuity of service harm prevention ecosystem

development

NFRs related to User Experience

• Usability: How intuitive the user interface of the system is
• e.g., easily navigate through different features, including X Y Z

• Accessibility: The degree to which a product, device, service, or
environment is available to as many people as possible
• e.g., is compatible with screen reader and uses alt text for all images

6

NFRs related to User Experience - Example

• Transit ticketing app

• The app shall allow riders to plan trips and buy tickets.
Riders may be in a hurry, in bright sunlight, with spotty
connectivity, and some riders use assistive technologies.

• Usability: A first-time user can buy a single-ride ticket in at
most 4 screens, with no account creation required.

• Accessibility: The app supports screen readers, namely all
controls have labels, and there is no “color-only” meaning.

7

NFRs related to Performance

• Efficiency: Ability to meet performance requirements
• e.g., completes operation Y in X seconds

• Scalability: Capability of a system to be adapted to meet new
size/scope requirements
• e.g., can automatically scale resources to support at most X users

8

NFRs related to Performance - Example

• Short video app

• The app shall allow users to create and upload short videos.
The home feed shall recommend hot/interesting videos.
A major event is happening (lots of live users).

• Efficiency (latency): Home feed shall load within 1s, after
which “time-to-first-content” shall be within 500ms on LTE.

• Efficiency (battery): Background prefetch is capped to
X MB/day and respects battery saver.

• Scalability: System sustains 20x normal traffic without
manual intervention, with p95 latency degradation bounded
to +200ms.

9

NFRs related to Continuity of Service

10

• Availability: The probability the system is available at a particular instant in time
• e.g., up time of XX%

• Reliability: The probability that a system will perform within its design limits without
failure over time
• e.g., XX% of success rate

• Robustness: Ability to respond adequately to unanticipated runtime conditions
• e.g., does not crash given the invalid user input of XX

• Fault-tolenrance: Ability to respond gracefully to failures at runtime (from
environment, components, connectors, component-connector mismatches, etc.)
• e.g., can continue operate with X number of nodes fail

• Survivability: Ability to resist, recover, and adapt to threats (attacks, failures,
accidents, etc.)
• e.g., redundancy in infrastructure to ensure continuous operation during cyber-attacks or

natural disasters

normal use

when things
go wrong

NFRs related to Continuity of Service - Example

• Ride sharing app

• Availability: The “request ride” core feature shall has 99.9%
monthly availability.

• …at peak times (e.g., on New Year’s Eve)

• Robustness: The app shall handle intermittent connectivity
without crashing; there should be clear notifications.

• Fault-tolerance: If one map provider fails, fall back to
another or to cached maps.

• Survivability: During partial outage, preserve essential
service and allow ongoing rides to complete.

11

NFRs related to Harm Prevention

• Security: How well the system protects users from external attacks
• e.g., multi-factor authentication to protect user accounts from

unauthorized access

• Privacy: How a system protects the private information of the user
• e.g., end-to-end encryption for private messages

• Safety: Ability to avoid failures that will cause loss of life, injury, or
loss to property
• e.g., collision detection in autonomous driving system

12

NFRs related to Harm Prevention

• Online banking app

• Threats can include credential theft, device loss,
man-in-the-middle attacks, fraud, …

• Security: The app shall require 2nd-factor authentication
(message/phone) for high-risk actions.

• Privacy: The app shall acquire user consent before collecting
transactions data for analytics.

• Safety: For transfers to a new payee, the app shall enforce a
cooling-off period before the transfer can be completed.

13

NFRs related to Ecosystem

• Portability: Ability to execute on multiple platforms while retaining
their functional and non-functional properties
• e.g., runs on Windows, MacOS, and Linux

• Heterogeneity: Ability to be composed of, or execute within,
disparate parts
• e.g., consists of X modules implemented in programming languages A B C

correspondingly
• e.g., (fitness tracking app) works across diverse sensors and handles

missing sensors gracefully

14

NFRs related to Development

• Evolvability: Ability to react on change, satisfy new requirements,
and add support for new environments
• e.g., features can be easily added/modified under the modular

architecture

• Readability: How well the system is comprehensible to a new
developer
• e.g., every function should have no more than X lines and have comments

• Complexity: The size of a system, the volume of constituent
elements, their internal structure, and their interdependencies
• e.g., consists of X modules, each with around Y lines of code

15

Exercise: NFRs

• Waterloo Learn course management system

• Discuss and come up with NFRs

16

Evaluating NFRs

• Think about NFRs concretely
• how can they be measured?
• use specific numbers/cases/items

17

Good Bad

Efficiency The system shall issue new tickets in
under 10 seconds The system shall issue tickets quickly

Usability The system shall enable a user with no
training to buy tickets in four clicks or less The system shall be user-friendly

Stakeholder Conflicts on NFRs

• Each stakeholder will have their own opinion about what
(non-functional) requirements matter most

18

Client/Sponsor User

Developer

Security

Reliability
Availability

Privacy

Portability

Heterogeneity

Usability
Accessibility

Efficiency

Evolvability

Readability
Complexity

Robustness
Fault-tolerance

Compatibility

FeaturesLow cost
Rapid development
Traceability of reqs

Minimum #errors

Typical Tradeoffs

• Security vs. Usability

• Functionality vs. Usability
• lots of features vs. simple flows

• Evolvability vs. Cost
• reusable components vs. one-off delivery

• Efficiency vs. Portability
• native optimizations vs. runs everywhere

19

Recap

• Functional vs. non-functional requirements

• Types of non-functional requirements

• Conflicts & tradeoffs

• Reminder: P0 team formation due this Friday

20

https://pengyunie.github.io/cs446-1261/docs/project/p0/

	Slide 1: Software Design & Architecture Non Functional Requirements
	Slide 2: Non-Functional Requirements
	Slide 3: FR vs NFR
	Slide 4: How to write requirements?
	Slide 5: Types of NFRs
	Slide 6: NFRs related to User Experience
	Slide 7: NFRs related to User Experience - Example
	Slide 8: NFRs related to Performance
	Slide 9: NFRs related to Performance - Example
	Slide 10: NFRs related to Continuity of Service
	Slide 11: NFRs related to Continuity of Service - Example
	Slide 12: NFRs related to Harm Prevention
	Slide 13: NFRs related to Harm Prevention
	Slide 14: NFRs related to Ecosystem
	Slide 15: NFRs related to Development
	Slide 16: Exercise: NFRs
	Slide 17: Evaluating NFRs
	Slide 18: Stakeholder Conflicts on NFRs
	Slide 19: Typical Tradeoffs
	Slide 20: Recap

