Software Designh and Architecture

Software Modeling with UML

Agenda
* why model software
* notation: UML
* component diagram
* class diagram

Why Model Software

® Document architecture and design decisions

® Reduce ambiguity; reason about missing requirements, risk, change, etc.

® Align teammates on responsibilities

Release Release Require
ments
Testing [e VS

N

document & iterate decisions early
(when changes are cheap)

risk bigger rework later

What is a Software Model?

® An abstract representation of a software for a purpose

® focus onone aspect/component/ process
® can be graphical or textual

® General principles of software modeling
® model the essentials
® provide perspective

® enable effective communication

Reference: https://www.computer.org/resources/software-engineering-models#modeling

Till ‘
—_— Sales Server g]
sales)
message s] 2]
----=» Transaction —(0— Accounting
: Processor Driver
€] ;
Message Queue Y
g]
Accounting
System

public class BankingExample {

public static final int MAX_BALANCE =
@*/ int balance;
@*/ boolean isLocked = false;

private /*@

//@ public invariant balance >= @ && balance

//@ assignable balance;
//@ ensures balance == 0;

spec_public
private /*@ spec_public

public BankingExample() {

this.balance = 0;

}

1000;

JML

<= MAX_BALANCE

UML
(unified
modeling
language)

(java modeling
language)

//@ requires @ < amount && amount + balance < MAX_BALANCE;

//@ assignable balance;
/@ ensures balance ==

\old(balance) +

public void credit(final int amount) {
this.balance += amount;

3

amount;

Software Modeling x Lifecycle

Requirements Architecture

m goals & user scenarios components & communication classes & APIs

el JJI-Jl * use case diagram e component diagram * class diagram
UML e communication diagram * sequence diagram
diagrams activity diagram * state machine diagram

Order]
dateReceved: Dato[0. 1] * Customer
i — ey L - W [Y)
Limits Accounts £] oy 7 acdress [0..1)
il loney
/ Gapatch s
. hide Accounting Sales Server $:| close o
o? System . 4
Trading v sales \
Sonee message £ |
}-----2w Transaction ._('Oﬂ Accounting
¢ Processor Driver
role. _nm-
€] T
a Y ~ Message Queue y X
g Trader é lnottems | %
actor v N
Order Li
) { uaniity: = i
use case g1 :«u Mo:-‘: - *
Accounting I
Salesperson System * salesRop \[, 0.1
system navigabie
boundary
Employee

Unified Modeling Language (UML)

® UML s a set of notations, not a methodology
Or process

¢ official standard backed by OMG, version 2.5.1

® UML doesn’t solve your problems for you, it
gives you a way of writing them down

® Focus on the parts that are useful to you

Structure
Diagram

Diagram

classification of UML diagram types

overall two classes:

* for static structure
* for dynamic behavior

today’s focus

|

Behavior
Diagram

<

Class Diagram
Companent
Diagram
Composite
Structure
Diagram
Deployment
Diagram
Obiject Diagram
Package
Diagram
Activity
Diagram
Use Case
Diagram

* component diagram (coarse-grained)

* class diagram (fine-grained)

State Machine
Diagram

Interaction
Diagram

Sequence
Diagram

Communication
Diagram

Interaction
Overview
Diagram

Timing Diagram

https://www.omg.org/spec/UML/2.5.1/About-UML/

UML Tools

® Drawing
® Microsoft whiteboard
® draw.io
® UML-specific drawing
¢ , Microsoft Visio, OmniGraffle, etc.
® UMLin plain text (as programming language)
® Mermaid
¢ PlantUML
® Different tools produce slightly different diagrams

® don’t get stuck in the details

® make sure the notations in your diagrams are consistent

https://whiteboard.office.com/
https://app.diagrams.net/
https://argouml-tigris-org.github.io/tigris/argouml/
https://argouml-tigris-org.github.io/tigris/argouml/
https://mermaid.live/edit
https://www.plantuml.com/

Running Example

® Transit ticketing app

® Features:
single-ride ticket,
day/week/month pass,
ticket wallet, ...

® Non functional requirements:
usability, efficiency, reliability,
security, .

RiderApp)\

__‘_‘_‘—‘-—__

Rider,

\

 Show Proof of Payment

{_ Buy Multi-Ride Pass

____‘_‘-—____ i - T ————
¢ Buy Single-Ride Ticket)

_ _ Inspector
{ Manage Payment Methods
OperatorApp\
_
i Verify Ticket e
-— I e S oy
—_'_‘__—-—__ !

—— _ ——
]

(" Update Ticket Fare >

Transit Agency

Use Case Diagram

Load transit passes.

Fiona
Adult

TRANSIT PASSES
Select Transit Agency

TTC Adult Weekly Pass
e 24 Dec 2018 - 30 Dec 2018

c
$43.75
TTC Adult Monthly Pass

< 1Jan2019-31Jan 2019
$146.25

PAY BY

Debit or Credit Card

Saved Payment Method

Component Diagram

® Shows the organization and dependencies between components/subsystems

_ 2 component
Rider App

x>] .

Qticketing jnterface
connectors between two components
lollipop: provide an interface
socket: use an interface

EI‘

Backend

Component Diagram

(=]
2

Rider App payment
g | fare ' g aJrd_party _payment ‘ . ; g]
i () «external»
s W
IC:IIC:'E:ratn::rﬁ‘mjJ/~ Backend J Payment Service
O interfaces can be provided by

ticketing externalcomponents

Component Diagram

Rider A
Cer TPRA components can be nested...
| < < to contain more detail
Ticket Purchase Wallet
1 (subsystem — component)

L
m\ // L Operator App\

- [~ 2] g]
v g Ticket Verification Fare Controller
payment ticketing - ‘/
] £]| ,—X
Payment Service Ticketing Service O u-/"}

icket fare
D CRUD

]

=]

— Pt
F 0
| !
L

Jrd_party| payment

‘ Database

izl

vexternal»
Payment Service

Class Diagram

® Describe the types of objects in a component/system and their relationships

Ticketing Service\

© TicketingController

-ticketManager: TicketManager
-fareManager: FareManager

+handleCreateTicket(typeld: String): TicketResponse
 thandleUpdateFare(typeld: String, newPrice: Double): Boolean |

/N

@ TicketManager

-ticketRepo: TicketRepository

+createNewTicket(typeld: String): Ticket
+validateTicket(ticketld: String): Boolean
Fa

@ Fare

+typeld: String
+price: Double
+name: String

+getPerRldePrlce): Double
+getValidUntil{): Date

(©) Ticket

+id: String

+typeld: String
+purchaseDate: Date
+status: String

SingleRideF
@ Ingleriderare +duration: Durati

@ FareManager

-fareRepo: FareRepository

+updateFare(typeld: String, price: Double)

+getAllFares(): List<Fare>

® TicketRepository

+save(ticket: Ticket)

+findByld(id: String): Ticket

/ (©) MultiRideFare

on

+rideLimit: Integer

@ FareRepository

+update(typeld: String, price: Double)
+findAll(): List<Fare>

-
-

AN

@ DatabaseConnection |

+query(sqgl: String): ResuliSet

11

Class Diagram — Class

© Fare

+typeld: String
+price: Double
+name: String

+getPerRidePrice(): Double
+getValidUntil(): Date

attribute format
visibility name: type

operation format

class name (required)

attributes (optional)
~=fields
structural features of a class

operations (optional)
~= methods/functions
actions that a class knows to carry out

visibility name (parameter-list): return-type

+: public -: private
~: package #: protected

v/

Person

Person

Person

+name: String
-address: Address
-birthdate: Date

Person

+eat()
+sleep()
+work()

+play()

12

Class Diagram — Association

©Student1

association
two classes that communicate with each other -members
another way to notate a property (other than attributes) 1 ”t*eam membership
1 association name
(optional)
role name (optional) @Team
multiplicity (optional)
©Student 1: single-valued, exactly one
0..1: optional, zero or one bidirectional ver.
1..* *: any number, zero or more
members 1.*: one or more

unidirectional ver.
implies some kind of flow

13

Class Diagram — Aggregation & Composition

aggregation

a whole-part relationship between

an aggregate (whole) and a constituent part,

where the part can exist independently from the aggregate

composition

a strong ownership and coinficient lifetime of
parts by the whole

14

Class Diagram — Generalization & Realization

@ Fare

+typeld: String
+price: Double
+name: String

+getPerRidePrice(): Double
+getValidUntil(): Date

@ MultiRideFare

©SingIeRideFare : :
+duration: Duration

+rideLimit: Integer

generalization ~ extends”

connects a subclass to its superclass
inheritance of attributes and operations
from the superclass to the subclass

@ ControlPanel

+getChoices(): List<Choice>
+makeChoice(c: Choice)
+getSelection(): Selection

&

@VendingMachine

realization ~implements’
connects a class with an interface
that supplies its behavioral specification

15

Class Diagram — Dependency & Package

Ticketing Service\

© TicketingController

-ticketManager: TicketManager
-fareManager: FareManager

+handleCreateTicket(typeld: String): TicketResponse
 +handleUpdateFare(typeld: String. newPrice: Double): Boolean

1

@ TicketManager

-ticketRepo: TicketRepository

+createMewTicket(typeld: String): Ticket
+validateTicket(ticketld: String): Boolean
-

-
-
#
-

K

(©) Ticket

+id: String

+typeld: String
+purchaseDate: Date
+status: String

@ Fare

+typeld: String
+price: Double
+name: String

}): Double
Date

+getPerRldeF‘rlce
| +getValidUntil():

{@SmgleRMEFare

+rideLimit:

N

@ FareManager

-fareRepo: FareRepository

+updateFare(typeld: String, price: Double}
+getAllFares(): List<Fare>

L\ \\
® TicketRepository @ FareRepaository

+save(ticket: Ticket)
+findByld(id: String): Ticket

+update(typeld: String, price: Double)
+findAll(): List<Fare=

@ MultiRideFare

+duration: Duration

Integer

T

package
container-like element for organizing
other elements (classes, packages) into groups

dependency
a semantic relationship between two elements
(e.g., used as parameter or return type)

-
o
-

AN
@ DatabaseConnection

+query(sql: String): ResultSet

16

Class Diagram -> Data Model

® Class diagram can be a handy tool for designing your data model

® data model: describing how real-world data is conceptually represented as computerized
information, and the types of operations available to access and update this information

© Fare

+typeld: String
+price: Double
+name: String

+getPerRidePrice(): Double
+getValidUntil(): Date

class name -> table name

attributes -> columns (name and type)

select/add an attribute as primary key

association -> relationship

Person

2.7

Person

Attendance

attentiveness

Attendance

attentiveness

Meeting

.- assoclation class
o’

Meeting

17

Recap

® why model software

® notation: UML
® (use case diagram)
® component diagram

® class diagram

® Complete by this Friday (Jan 23)

¢ Is out; due on next Friday (Jan 30)

18

https://pengyunie.github.io/cs446-1261/docs/project/p1
https://pengyunie.github.io/cs446-1261/docs/individual-assessments/a1
https://pengyunie.github.io/cs446-1261/docs/individual-assessments/a1

	Slide 1: Software Modeling with UML
	Slide 2: Why Model Software
	Slide 3: What is a Software Model?
	Slide 4: Software Modeling x Lifecycle
	Slide 5: Unified Modeling Language (UML)
	Slide 6: UML Tools
	Slide 7: Running Example
	Slide 8: Component Diagram
	Slide 9: Component Diagram
	Slide 10: Component Diagram
	Slide 11: Class Diagram
	Slide 12: Class Diagram – Class
	Slide 13: Class Diagram – Association
	Slide 14: Class Diagram – Aggregation & Composition
	Slide 15: Class Diagram – Generalization & Realization
	Slide 16: Class Diagram – Dependency & Package
	Slide 17: Class Diagram -> Data Model
	Slide 18: Recap

