
Software Design and Architecture

Software Modeling with UML

Winter 2026. Instructor: Pengyu Nie.
Acknowledgements: slides adapted from previous versions by Mei Nagappan and Shane McIntosh, which are adapted from previous versions by Zhen Ming Jiang, Ahmed E. Hassan, Reid Holmes.

 Agenda
• why model software
• notation: UML
• component diagram
• class diagram

Why Model Software

• Document architecture and design decisions

• Reduce ambiguity; reason about missing requirements, risk, change, etc.

• Align teammates on responsibilities

2

Require
ments

Arch &
Design

Coding

Testing

Release

!

Require
ments

Arch &
Design

Coding

Testing

Release

+

+

risk bigger rework laterdocument & iterate decisions early
(when changes are cheap)

vs

What is a Software Model?

• An abstract representation of a software for a purpose
• focus on one aspect / component / process

• can be graphical or textual

• General principles of software modeling
• model the essentials

• provide perspective

• enable effective communication

3

Reference: https://www.computer.org/resources/software-engineering-models#modeling

UML
(unified
modeling
language)

JML
(java modeling
language)

Software Modeling x Lifecycle

Requirements Architecture Design Coding

4

Focus goals & user scenarios components & communication classes & APIs

Example
UML
diagrams

• use case diagram • component diagram
• communication diagram
• activity diagram

• class diagram
• sequence diagram
• state machine diagram

Unified Modeling Language (UML)

• UML is a set of notations, not a methodology
or process
• official standard backed by OMG, version 2.5.1

• UML doesn’t solve your problems for you, it
gives you a way of writing them down

• Focus on the parts that are useful to you

5

classification of UML diagram types
overall two classes:
• for static structure
• for dynamic behavior

today’s focus
• component diagram (coarse-grained)
• class diagram (fine-grained)

https://www.omg.org/spec/UML/2.5.1/About-UML/

UML Tools

• Drawing
• Microsoft whiteboard https://whiteboard.office.com

• draw.io https://app.diagrams.net/

• UML-specific drawing
• ArgoUML, Microsoft Visio, OmniGraffle, etc.

• UML in plain text (as programming language)
• Mermaid https://mermaid.live/edit

• PlantUML https://www.plantuml.com/

• Different tools produce slightly different diagrams
• don’t get stuck in the details

• make sure the notations in your diagrams are consistent

6

https://whiteboard.office.com/
https://app.diagrams.net/
https://argouml-tigris-org.github.io/tigris/argouml/
https://argouml-tigris-org.github.io/tigris/argouml/
https://mermaid.live/edit
https://www.plantuml.com/

Running Example

• Transit ticketing app

• Features:
single-ride ticket,
day/week/month pass,
ticket wallet, …

• Non functional requirements:
usability, efficiency, reliability,
security, …

7Use Case Diagram

Component Diagram

• Shows the organization and dependencies between components/subsystems

8

component

interface
connectors between two components
lollipop: provide an interface
socket: use an interface

Component Diagram

9

interfaces can be provided by
external components

Component Diagram

10

components can be nested…
to contain more detail
(subsystem – component)

Class Diagram

• Describe the types of objects in a component/system and their relationships

11

Class Diagram – Class

12

class name (required)

operations (optional)
~= methods/functions
actions that a class knows to carry out

attributes (optional)
~= fields
structural features of a class

visibility name: type [multiplicity] = default {property-string}

+: public -: private
~: package #: protected

visibility name (parameter-list): return-type {property-string}

attribute format

operation format

Class Diagram – Association

13

association
two classes that communicate with each other
another way to notate a property (other than attributes)

association name
(optional)

role name (optional)
multiplicity (optional)
1: single-valued, exactly one
0..1: optional, zero or one
*: any number, zero or more
1..*: one or more

bidirectional ver.

unidirectional ver.
implies some kind of flow

Class Diagram – Aggregation & Composition

14

aggregation
a whole-part relationship between
an aggregate (whole) and a constituent part,
where the part can exist independently from the aggregate

composition
a strong ownership and coinficient lifetime of
parts by the whole

Class Diagram – Generalization & Realization

15

generalization `extends`
connects a subclass to its superclass
inheritance of attributes and operations
from the superclass to the subclass

realization `implements`
connects a class with an interface
that supplies its behavioral specification

Class Diagram – Dependency & Package

16

package
container-like element for organizing
other elements (classes, packages) into groups

dependency
a semantic relationship between two elements
(e.g., used as parameter or return type)

Class Diagram -> Data Model

• Class diagram can be a handy tool for designing your data model
• data model: describing how real-world data is conceptually represented as computerized

information, and the types of operations available to access and update this information

17

association -> relationship

class name -> table name

attributes -> columns (name and type)

select/add an attribute as primary key

Recap

• why model software

• notation: UML
• (use case diagram)

• component diagram

• class diagram

• Complete P1 Project Setup by this Friday (Jan 23)

• A1 UML Practice is out; due on next Friday (Jan 30)

18

https://pengyunie.github.io/cs446-1261/docs/project/p1
https://pengyunie.github.io/cs446-1261/docs/individual-assessments/a1
https://pengyunie.github.io/cs446-1261/docs/individual-assessments/a1

	Slide 1: Software Modeling with UML
	Slide 2: Why Model Software
	Slide 3: What is a Software Model?
	Slide 4: Software Modeling x Lifecycle
	Slide 5: Unified Modeling Language (UML)
	Slide 6: UML Tools
	Slide 7: Running Example
	Slide 8: Component Diagram
	Slide 9: Component Diagram
	Slide 10: Component Diagram
	Slide 11: Class Diagram
	Slide 12: Class Diagram – Class
	Slide 13: Class Diagram – Association
	Slide 14: Class Diagram – Aggregation & Composition
	Slide 15: Class Diagram – Generalization & Realization
	Slide 16: Class Diagram – Dependency & Package
	Slide 17: Class Diagram -> Data Model
	Slide 18: Recap

