Software Designh and Architecture

Architectural Views

Agenda
* goals of representing architecture
* more UML diagrams
* sequence diagram
* communication diagram
* state machine diagram
* activity diagram

Representing Software Architecture

® Software architecture is fundamentally about facilitating technical communication
between project stakeholders

® Properties of representations:
® Ambiguity: open to more than one interpretation?
® Accuracy: correct within tolerances

® Precision: consistent but not necessarily correct

Architectural Views

® Architectural views (UML diagrams)

¢ different views focus on specific subsets of

elements or subsets of relationships

® views often focus on specific concerns or

scenarios within a system

® but... views can overlap; maintaining consistency

between views is challenging

classification of UML diagram types
overall two classes:
e for static structure

* for dynamic behavior \

s—componentdiagram
s—ctassdiagram

* deployment diagram

s—secaseciagram

* sequence diagram

* communication diagram
* state machine diagram

* activity diagram

Class Diagram

Structure
Diagram

Diagram

Behavior
Diagram

<

Interaction q
Diagram

| | Communication

Diagram

Component
Diagram
Composite
Structure
Diagram .
Deployment
Diagram
Object Ciagram
Package
Diagram
Activity
Diagram
Use Case
Diagram
State Machine
Diagram
Sequence
Diagram

Interaction
Overview
Diagram

Timing Diagram

Component Diagram

structure || high-level

Rider App\

‘ Ticket Purchase

|
Backend) \

z
Wallet

Operator App\

& Class Diagram

structure

low-level

Ticketing Service\

© TicketingController

-ticketManager: TicketManager
-fareManager: FareManager

+handleCreateTicket(typeld: String): TicketResponse
+handleUpdateFare(typeld: String, newPrice: Double): Boolean

<5

]

/N

payment

g
Payment Service

U

ticketing

Ticket Verification

Fare Controller

@ TicketManager
-ticketRepo: TicketRepository

+createNewTicket(typeld: String): Ticket
+validateTicket(ticketld: String): Boolean
e

© FareManager
-fareRepo: FareRepository

+updateFare(typeld: String, price: Double)
+getAllFares(): List<Fare>

subsystem

Database

3rd_party| payment

«external»
Payment Service

component

© Ticket
+id: String
+typeld: String

+status: String

+purchaseDate: Date

+typeld: String
+price: Double
+name: String

+getPerRidePrice():

| +getValidUntil():

@ Fare

® TicketRepository @ FareRepository

+save(ticket: Ticket)
+findByld(id: String): Ticket

+update(typeld: String, price: Double)
+findAll(): List<Fare>

): Double
Date RS Ss

>

{@SingleRideFare

@ MultiRideFare

+duration: Duration
+rideLimit: Integer

-

@ DatabaseGonnection

+query(sql: String): ResultSet

Deployment Diagram (Gtructure) physicat)

BrowserClient Rich Client

browser

{08 = Windows} v,

herculesClient.exe

3

™" tagged value

communication path

a
s
£

e

* z
http/Internet http/LAN p
deployed artifact
Web server
{OS = Solaris}
{web server = apache} *
Java RMI/
loyad =
{number deployad = 3} LAN
herculesWeb.war
A ,,
:: execution ,»""’
B environment node
device node

of

Application Server

JoveGL.exe
k4 {vendor = romanSoft}
' [component = General Ledger}

EJB Container

herculesBase.ear
herculesAR.ear
herculesAP.ear

JDBC

Oracle DBMS

node

something that can host some software
can be device or execution environment

artifact

physical manifestations of software
executables, data files, configuration files, etc.

Sequence Diagram [behavior | stonotosy |

H . . . A
| anﬂrder| ‘ anOrderLine ‘ participant/object D

: : : create i
calculatePrice _ lifeline ,—;. creation
> | l . and
: getQuantity : HES””F destroy
. getProduct I -
message g > | A | | B |

found message aProduct

return message

self message

message with condition :l
message with iteration . [price == 10]
*[i=1..N] " calculateDiscounts
message with parameters .
getPrice(quantity: number) '.

| anﬂrder| ‘ anOrderLine

|
1
|
|
|
|
|
|
calculateBasePrice |
|
|
|
|
|
|
|
|
1

Se q u e n C e D i a gra m behavior chronology

‘ anOrder | ‘ anOrderLine

]

.]

calculatePrice |
= —

getQuantity
|
activation bar getProduct S !
shows when each participant is active
(the function call is on stack) aProduct

calculateBasePrice

<

[price == 10]
calculateDiscounts

iy

‘ anOrder | ‘ anOrderLine

Sequence Diagram [behavior | stonotosy |

‘ anOrder | anOrderLine | | aProduct | | aCustomer
calculateFrice‘ |

[]
]
i
> i
i
i

getQuantity - |

- I
getProduct - ! |
__ aProduct |

getPricingDetails

calculateBasePrice

—

[price == 10]
calculateDiscounts

<]
-

getDiscountinfo

. 1

‘ anDrder| ‘ anOrderlLine ‘ | aProduct ‘ | aCustomer‘

Practice: sequence diagram for login

® Task: draw UML sequence diagram(s) for the user authentication of an app, as we
add more requirements...

® 1 (basic): User can register for a new account with username and password
® 2 (basic): User can login with the correct username and password
® 3:Useris automatically logged-in after registration

® 4: User can authenticate with a Google account (“Login with Google”)

Communication Diagram [benavior |[topotogy

® alternative name: collaboration diagram (in UML v1)

} \l/ 1: calculatePrice

1.5.1: getDiscountinfo
="
a Customer

1.3: getPricingDetails

Jn

message \ —
1.4 caloulateBasePrice () \ | 9%/€C
1.5: calculateDiscounts() an Order

sequence number
can be in nested number format 1 1: getQuantity()
1.2: getPreduct ()

(an Order Line }

a Product J

State Machine Diagram [behavior |[utecycte

® alternative names: state diagram, state machine

. download course offerings

Start state

> Downloading | State

transition
make a course selection

)

Selecting

e .

make a different selection verify selection

Verifying | elect another course

e -

check schedule

| _ final state
. " sign schedule
CheckingSchedule I 2)=©

11

ACt'V'ty Dlagra m | behavior || controlflow |

fork
|
|
i

join

.

Fa

| Receive Order \| activity

~ “anon-atomic execution
parallel execution I

|ffFiII Order | flow
decision ; g
conditional branch ;i
| Y
i [priority order] lelse] |F-Ser'||:| Involce ‘-l

L N ™,
Il Overnight Delivery | | Regular Delivery |

o Y

| | Receive Payment |

b -

merge

-
| Close Order |

=

12

Prescriptive vs. Descriptive Representations

® Prescriptive architecture dictates how the system will be built
a priori (as conceived)

® Descriptive architecture captures how the system was actually built a posteriori
(as implemented)

® Architectural degradation

® drift: changes that are not captured in the current architecture but do not violate it

® erosion: changes that violate the current architecture

13

	Slide 1: Architectural Views
	Slide 2: Representing Software Architecture
	Slide 3: Architectural Views
	Slide 4: Component Diagram & Class Diagram
	Slide 5: Deployment Diagram
	Slide 6: Sequence Diagram
	Slide 7: Sequence Diagram
	Slide 8: Sequence Diagram
	Slide 9: Practice: sequence diagram for login
	Slide 10: Communication Diagram
	Slide 11: State Machine Diagram
	Slide 12: Activity Diagram
	Slide 13: Prescriptive vs. Descriptive Representations

