Software Designh and Architecture

Architectural Views

Agenda
* goals of representing architecture
* more UML diagrams
* sequence diagram
* communication diagram
* state machine diagram
* activity diagram



Representing Software Architecture

® Software architecture is fundamentally about facilitating technical communication
between project stakeholders

® Properties of representations:
® Ambiguity: open to more than one interpretation?
® Accuracy: correct within tolerances

® Precision: consistent but not necessarily correct



Architectural Views

® Architectural views (UML diagrams)

¢ different views focus on specific subsets of

elements or subsets of relationships

® views often focus on specific concerns or

scenarios within a system

® but... views can overlap; maintaining consistency

between views is challenging

classification of UML diagram types
overall two classes:
e for static structure

* for dynamic behavior \

s—componentdiagram
s—ctassdiagram

* deployment diagram

s—secaseciagram

* sequence diagram

* communication diagram
* state machine diagram

* activity diagram
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Deployment Diagram (Gtructure ) physicat )
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Sequence Diagram [ behavior | stonotosy |
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Se q u e n C e D i a gra m behavior chronology

‘ anOrder | ‘ anOrderLine

]

. ]

calculatePrice |
= —

getQuantity
|
activation bar getProduct S !
shows when each participant is active
(the function call is on stack) aProduct

calculateBasePrice

<

[price == 10]
calculateDiscounts

iy

‘ anOrder | ‘ anOrderLine




Sequence Diagram [ behavior | stonotosy |
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Practice: sequence diagram for login

® Task: draw UML sequence diagram(s) for the user authentication of an app, as we
add more requirements...

® 1 (basic): User can register for a new account with username and password
® 2 (basic): User can login with the correct username and password
® 3:Useris automatically logged-in after registration

® 4: User can authenticate with a Google account (“Login with Google”)



Communication Diagram [ benavior |[ topotogy

® alternative name: collaboration diagram (in UML v1)

} \l/ 1: calculatePrice

1.5.1: getDiscountinfo
="
a Customer

1.3: getPricingDetails

Jn

message \ —
1.4 caloulateBasePrice () \ | 9%/€C
1.5: calculateDiscounts() an Order

sequence number
can be in nested number format 1 1: getQuantity()
1.2: getPreduct ()

(an Order Line }

a Product J




State Machine Diagram [ behavior |[ utecycte

® alternative names: state diagram, state machine
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Prescriptive vs. Descriptive Representations

® Prescriptive architecture dictates how the system will be built
a priori (as conceived)

® Descriptive architecture captures how the system was actually built a posteriori
(as implemented)

® Architectural degradation

® drift: changes that are not captured in the current architecture but do not violate it

® erosion: changes that violate the current architecture
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