
CS846
Machine Learning for Software Engineering

Pengyu Nie

Language Modeling
and N-gram Models
Language models
N-gram models
Perplexity

2
Acknowledgements: many slides adapted from Jessy Li & Milos Gligoric's ECE-W382V at UT Austin

Natural Language Examples

◼ Speech recognition. Suppose it is noisy and you hear
someone say something that sounds like
❑ Theater owners worry about popcorn sales. OR

❑ Theater owners worry about unicorn sales.

◼ A person will probably assume the first option is what
was actually said. This is a sentence that has higher
probability.
❑ Is it more likely to talk about popcorn or about unicorns (if no

other info is available)?

❑ Which is more similar theater:popcorn or theater:unicorn?

3

Natural Language Examples

◼ Spelling correction

❑ I can stop by tomorrow.

❑ I cab stop by tomorrow.

◼ The second sentence is less likely. So not only
we can figure out that there is possibly an error
there, but also what was the intended correct
word.

4

Natural Language Examples

• Predicting next word
• Once upon a …

• I'd like to make a collect …

• Let's go outside and take a …

5

Programming Language Examples

• Predicting next token
• import numpy as ...
• static public void main (String [] args) ...

• Coding convention
• String userInput = new Scanner(System.in).next();

• String user_input = new Scanner(System.in).next();

• String userInput = new Scanner(System.out).next();

6

Probabilistic Language Modeling

• Compute the probability of a sequence of words/tokens:
• 𝑃 𝑊 = 𝑃 𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑇

• Compute probability of an upcoming word
• 𝑃 𝑤5 𝑤1, 𝑤2, 𝑤3, 𝑤4

• A model that computes either of these
𝑃 𝑊 or 𝑃 𝑤𝑡 𝑤1, 𝑤2, … 𝑤𝑡−1
is called a language model

7

Chain Rule of Probability

• 𝑃 𝑊 or 𝑃 𝑤𝑡 𝑤1, 𝑤2, … 𝑤𝑡−1

8

𝑃 𝑊
= 𝑃 𝑤1, 𝑤2, … , 𝑤𝑇−1, 𝑤𝑇

= 𝑃 𝑤𝑇 𝑤1, 𝑤2, … , 𝑤𝑇−1 ⋅ 𝑃 𝑤1, 𝑤2, … , 𝑤𝑇−1

= ⋯

= ෑ

𝑡=1…𝑇

𝑃 𝑤𝑡 𝑤1, 𝑤2, … , 𝑤𝑡−1

W = (import, numpy, as, np)

𝑃 𝑊
= 𝑃 𝑖𝑚𝑝𝑜𝑟𝑡, 𝑛𝑢𝑚𝑝𝑦, 𝑎𝑠, 𝑛𝑝
= 𝑃 𝑛𝑝 𝑖𝑚𝑝𝑜𝑟𝑡, 𝑛𝑢𝑚𝑝𝑦, 𝑎𝑠) ⋅ 𝑃 𝑖𝑚𝑝𝑜𝑟𝑡, 𝑛𝑢𝑚𝑝𝑦, 𝑎𝑠
= 𝑃 𝑛𝑝 𝑖𝑚𝑝𝑜𝑟𝑡, 𝑛𝑢𝑚𝑝𝑦, 𝑎𝑠) ⋅ 𝑃 𝑎𝑠 | 𝑖𝑚𝑝𝑜𝑟𝑡, 𝑛𝑢𝑚𝑝𝑦
⋅ 𝑃 𝑖𝑚𝑝𝑜𝑟𝑡, 𝑛𝑢𝑚𝑝𝑦
= 𝑃 𝑛𝑝 𝑖𝑚𝑝𝑜𝑟𝑡, 𝑛𝑢𝑚𝑝𝑦, 𝑎𝑠) ⋅ 𝑃 𝑎𝑠 | 𝑖𝑚𝑝𝑜𝑟𝑡, 𝑛𝑢𝑚𝑝𝑦
⋅ 𝑃 𝑛𝑢𝑚𝑝𝑦 | 𝑖𝑚𝑝𝑜𝑟𝑡 ⋅ 𝑃(𝑖𝑚𝑝𝑜𝑟𝑡)

N-gram Language Model, Markov Assumption

9

𝑃 𝑊
= 𝑃 𝑤1, 𝑤2, … , 𝑤𝑇−1, 𝑤𝑇

= 𝑃 𝑤𝑇 𝑤1, 𝑤2, … , 𝑤𝑇−1 ⋅ 𝑃 𝑤1, 𝑤2, … , 𝑤𝑇−1

= ⋯

= ෑ

𝑡=1…𝑇

𝑃 𝑤𝑡 𝑤1, 𝑤2, … , 𝑤𝑡−1

𝑃 𝑤𝑡 𝑤1, 𝑤2, … , 𝑤𝑡−1 ≈ 𝑃 𝑤𝑡 𝑤𝑡− 𝑛−1 , … , 𝑤𝑡−1

𝑃 𝑊 = ෑ

𝑡=1…𝑇

𝑃 𝑤𝑡 𝑤1, 𝑤2, … , 𝑤𝑡−1 ≈ ෑ

𝑡=1…𝑇

𝑃 𝑤𝑡 𝑤𝑡− 𝑛−1 , … , 𝑤𝑡−1

• n-gram: n consecutive tokens
• n-gram language model: computes the

probability of the upcoming token
conditioning on the previous (n-1) tokens

Simplest Case: Unigram Model

10

𝑛 = 1

𝑃 𝑊 ≈ ෑ

𝑡=1…𝑇

𝑃(𝑤𝑡)

𝑃 𝑊 = ෑ

𝑡=1…𝑇

𝑃 𝑤𝑡 𝑤1, 𝑤2, … , 𝑤𝑡−1 ≈ ෑ

𝑡=1…𝑇

𝑃 𝑤𝑡 𝑤𝑡− 𝑛−1 , … , 𝑤𝑡−1

W = (import, numpy, as, np)

𝑃 𝑊
= 𝑃 𝑖𝑚𝑝𝑜𝑟𝑡, 𝑛𝑢𝑚𝑝𝑦, 𝑎𝑠, 𝑛𝑝
≈ 𝑃 𝑖𝑚𝑝𝑜𝑟𝑡 ⋅ 𝑃 𝑛𝑢𝑚𝑝𝑦 ⋅ 𝑃 𝑎𝑠 ⋅ 𝑃 𝑛𝑝

DEMO: generate code from unigram model

Bigram model

11

𝑛 = 2

𝑃 𝑊 ≈ ෑ

𝑡=1…𝑇

𝑃(𝑤𝑡|𝑤𝑡−1)

𝑃 𝑊 = ෑ

𝑡=1…𝑇

𝑃 𝑤𝑡 𝑤1, 𝑤2, … , 𝑤𝑡−1 ≈ ෑ

𝑡=1…𝑇

𝑃 𝑤𝑡 𝑤𝑡− 𝑛−1 , … , 𝑤𝑡−1

W = (import, numpy, as, np)

𝑃 𝑊
= 𝑃 𝑖𝑚𝑝𝑜𝑟𝑡, 𝑛𝑢𝑚𝑝𝑦, 𝑎𝑠, 𝑛𝑝
≈ 𝑃 𝑖𝑚𝑝𝑜𝑟𝑡
⋅ 𝑃 𝑛𝑢𝑚𝑝𝑦 𝑖𝑚𝑝𝑜𝑟𝑡)
⋅ 𝑃 𝑎𝑠 𝑛𝑢𝑚𝑝𝑦)
⋅ 𝑃 𝑛𝑝 𝑎𝑠)
⋅ 𝑃 </s> 𝑛𝑝)

𝑃 𝑖𝑚𝑝𝑜𝑟𝑡 <s>)

• special tokens
• <s> begin of sequence
• </s> end of sequence

Bigram model, Maximum Likelihood Estimation

12

𝑛 = 2

𝑃 𝑊 ≈ ෑ

𝑡=1…𝑇

𝑃(𝑤𝑡|𝑤𝑡−1)

𝑃 𝑊 = ෑ

𝑡=1…𝑇

𝑃 𝑤𝑡 𝑤1, 𝑤2, … , 𝑤𝑡−1 ≈ ෑ

𝑡=1…𝑇

𝑃 𝑤𝑡 𝑤𝑡− 𝑛−1 , … , 𝑤𝑡−1

W = (import, numpy, as, np)

𝑃 𝑊
= 𝑃 𝑖𝑚𝑝𝑜𝑟𝑡, 𝑛𝑢𝑚𝑝𝑦, 𝑎𝑠, 𝑛𝑝
≈ 𝑃 𝑖𝑚𝑝𝑜𝑟𝑡 | <s>
⋅ 𝑃 𝑛𝑢𝑚𝑝𝑦 𝑖𝑚𝑝𝑜𝑟𝑡)
⋅ 𝑃 𝑎𝑠 𝑛𝑢𝑚𝑝𝑦)
⋅ 𝑃 𝑛𝑝 𝑎𝑠)
⋅ 𝑃 </s> 𝑛𝑝)

how to estimate
these probabilities?

𝑃 𝑤𝑡 𝑤𝑡−1 =
𝑐 𝑤𝑡−1, 𝑤𝑡

𝑐 𝑤𝑡−1

DEMO: bigram model

Practical Issues

https://github.com/kpu/kenlm

• Log probability
• log 𝑝1 ⋅ 𝑝2 = log 𝑝1 + log 𝑝2

• avoid underflow
• adding is faster than multiplying

• Smoothing/Backoff
• 𝑝 = 0 for tokens unseen in the training set (out-of-vocabulary)

• cause problem when calculating log probability ... and perplexity (later)
• cannot generalize to testing set (e.g., new code using new libraries)

• Add-1 smoothing / Laplace smoothing:

• Backoff: use (n-1)-gram model when n-gram count is 0 (with a scale)
• Kneser-Ney smoothing... https://github.com/kpu/kenlm 13

𝑃𝑀𝐿𝐸 𝑤𝑡 𝑤𝑡−1 =
𝑐 𝑤𝑡−1, 𝑤𝑡

𝑐 𝑤𝑡−1
𝑃𝐴𝑑𝑑1 𝑤𝑡 𝑤𝑡−1 =

𝑐 𝑤𝑡−1, 𝑤𝑡 + 1

𝑐 𝑤𝑡−1 + 𝑉

DEMO: add these and
scale to larger n-grams

https://github.com/kpu/kenlm

Perplexity, Evaluating Language Models

• The best language model is one that best predicts an unseen test set
(i.e., gives the highest 𝑃 𝑊)

• Perplexity:
the inverse probability of the test set, normalized by the number of tokens
• lower = better

• (Related) Cross-entropy

14

𝑃𝑃 𝑊 = 𝑃 𝑊 −
1
𝑇 =

𝑇 1

𝑃 𝑤1, 𝑤2, … , 𝑤𝑇

• Intrinsic evaluation
Perplexity is a bad approximation
unless the test data looks just like the
training data, so generally only useful in
pilot experiments.

DEMO: perplexity of n-gram models
𝐻 𝑊 = − ෍

𝑡=1…𝑇

1

𝑇
log 𝑃 𝑤𝑡

= log 𝑃𝑃 𝑊

Remarks

• In practice, use existing implementations of n-gram models
• nltk (in Python): https://www.nltk.org/_modules/nltk/model/ngram.html
• KenLM (in C++): https://github.com/kpu/kenlm

15

https://www.nltk.org/_modules/nltk/model/ngram.html
https://github.com/kpu/kenlm

	Slide 1: CS846 Machine Learning for Software Engineering
	Slide 2: Language Modeling and N-gram Models
	Slide 3: Natural Language Examples
	Slide 4: Natural Language Examples
	Slide 5: Natural Language Examples
	Slide 6: Programming Language Examples
	Slide 7: Probabilistic Language Modeling
	Slide 8: Chain Rule of Probability
	Slide 9: N-gram Language Model, Markov Assumption
	Slide 10: Simplest Case: Unigram Model
	Slide 11: Bigram model
	Slide 12: Bigram model, Maximum Likelihood Estimation
	Slide 13: Practical Issues
	Slide 14: Perplexity, Evaluating Language Models
	Slide 15: Remarks

