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Natural Language Examples

= Speech recognition. Suppose It iIs noisy and you hear
someone say something that sounds like
o Theater owners worry about popcorn sales. OR
o Theater owners worry about unicorn sales.

= A person will probably assume the first option Is what
was actually said. This Is a sentence that has higher
probabillity.
o Is it more likely to talk about popcorn or about unicorns (if no
other info is available)?

2 Which is more similar theater:popcorn or theater:unicorn?



Natural Language Examples

= Spelling correction
a | can stop by tomorrow.
o | cab stop by tomorrow.

= The second sentence is less likely. So not only
we can figure out that there Is possibly an error
there, but also what was the intended correct

word.



Natural Language Examples

* Predicting next word

Once upon a ...
I'd like to make a collect ...
Let's go outside and take a ...



Programming Language Examples

* Predicting next token
e import numpy as ...
e static public void main ( String [ ] args ) ...

* Coding convention

 String userInput = new Scanner(System.in).next();
* String user_input = new Scanner(System.in).next();
 String userInput = new Scanner(System.out).next();



Probabilistic Language Modeling

* Compute the probability of a sequence of words/tokens:
« P(W) = P(wy,w,, W3, ..., Wr)

* Compute probability of an upcoming word
* P(ws|wy, wa, w3, wy)

* A model that computes either of these
P(W) or P(w¢|wy, Wy, ... Wi_q)
Is called a language model



Chain Rule of Probability

* P(W) or P(wi|wq, wy, ...wr_q)

P(W) W = (import, numpy, as, np)

= P(Wl, Wy, ..., Wr_1, WT)

= P(wrlwy, wy, .., wr_q) - P(Wy, Wy, ..., wr_1) P(W)

= .- = P(import, numpy, as, np)

B = P(np | import, numpy, as) - P(import, numpy, as)

- 1_[ P(Welw, wa, ..., We—q) = P(np | import, numpy, as) - P(as | import, numpy)
t=1..T

- P(import, numpy)
= P(np | import, numpy, as) - P(as | import, numpy)
- P(numpy | import) - P(import)



N-gram Language Model, Markov Assumption

= 1_[ P(welwy, wy, o, wi_y) R\
t=1.T * n-gram: n consecutive tokens
* n-gram language model: computes the
probability of the upcoming token
P(welwy, wa, ..., wy_q) = P(Wt|Wt—(n—1)' "-'Wt—l) conditioning on the previous (n-1) tokens

- J

| |
P(W) = 1_[ P(welwy, wy, o, wi_q) = 1_[ P(We|We—(no1)s s We1)

t=1..T t=1..T



Simplest Case: Unigram Model

P(W) = 1_[ P(We|lwy, Wy, o, We_q) = 1_[ P(Wt|wt_(n_1), ...,Wt_l)

t=1..T t=1..T
0 =1 W = (import, numpy, as, np)
pany~ | | Pow) P(W)

t=1.T = P(import, numpy, as, np)

~ P(import) - P(numpy) - P(as) - P(np)

[ DEMO: generate code from unigram model ]
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Bigram model

P(W) = 1_[ P(We|lwy, Wy, o, We_q) = 1_[ P(Wt|wt_(n_1), ---»Wt—1)
=1

t=1...T t=1...T

W = (import, numpy, as, np)

n=2
Py~ | | Powelweo) P(W)
t=1.T = P(import, numpy, as, np)
- N ® Ptimporty P(import | <s>)

- P(numpy | import)
- P(as | numpy)

- P(np | as)

- P(</s> | np)

* specialtokens
* <s>begin of sequence
* </s>end of sequence

- J
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Bigram model, Maximum Likelihood Estimation

P(W) = 1_[ P(We|lwy, Wy, o, We_q) = 1_[ P(wt|wt_(n_1), ---»Wt—1)

t=1.T t=1.T
n=2 W = (import, numpy, as, np)
Py~ | | Powelweo) P(W)
t=1.T = P(import, numpy, as, np)
~ P(import | <s>)
how to estimate - P(numpy | import)
( ) these probabilities? - P(as | numpy)
c(We_q, W :

P(welwe_q) = Lt P(np | as)

c(We_q1) - P(</s> | np)

[ DEMO: bigram model ]
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Practical Issues

* Log probability
* log(p; - p2) = logp; +logp,
* avoid underflow
* adding is faster than multiplying

* Smoothing/Backoff

* p = 0 for tokens unseen in the training set (out-of-vocabulary)
* cause problem when calculating log probability ... and perplexity (later)
* cannot generalize to testing set (e.g., new code using new libraries)
* Add-1 smoothing/ Laplace smoothing: DEMO: add these and ]

c(We_q1, W) Pyt (wi] ) cwe_g,wy) +1 [ scale to larger n-grams
Welwe_1) =
c(We_q) Addii e c(weq1) + V|

PMLE(thwt—l) =

* Backoff: use (n-1)-gram model when n-gram count is O (with a scale)
* Kneser-Ney smoothing... https://github.com/kpu/kenlm .



https://github.com/kpu/kenlm

Perplexity, Evaluating Language Models

* The best language model is one that best predicts an unseen test set
(i.e., gives the highest P(IW))

* Perplexity:
the inverse probability of the test set, normalized by the number of tokens
* lower = better

* Intrinsic evaluation A
1T 1 Perplexity is a bad approximation
PPIW) =PW)'T = \/P(WLWZ: e, WT) unless the test data looks just like the

training data, so generally only useful in
pilot experiments.
\C /

* (Related) Cross-entropy

1 [ DEMO: perplexity of n-gram models ]
HW) = — z TlogP(Wt)

t=1..T
= log PP(W)
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Remarks

* |n practice, use existing implementations of n-gram models
* nltk (in Python): https://www.nltk.org/ modules/nltk/model/ngram.html
e KenLM (in C++): https://github.com/kpu/kenlm
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