CS846 Machine Learning for Software Engineering

Pengyu Nie

Sequence-to-Sequence Models and Transformers

Tokenizer

Embedding

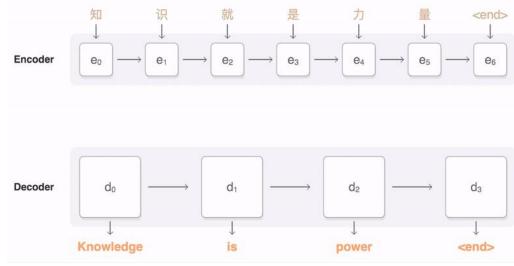
Attention

Acknowledgements: many slides adapted from Jessy Li & Milos Gligoric's ECE-W382V at UT Austin; demo adapted from https://nlp.seas.harvard.edu/annotated-transformer/

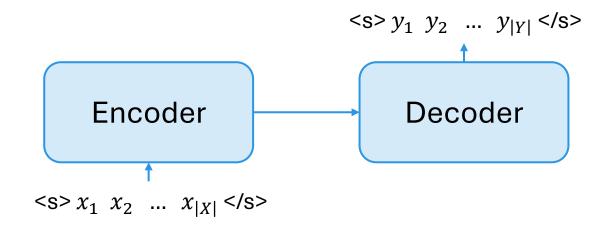
Motivation

- Language model: P(W) or $P(w_i|w_1, ..., w_{i-1})$
- Tasks with inputs and outputs
 - Neural machine translation (NMT)
 - Summarization
 - Examples in Software Engineering?
- P(Y|X) or $P(y_i|y_1, ..., y_{i-1}, x_1, ..., x_{|X|})$

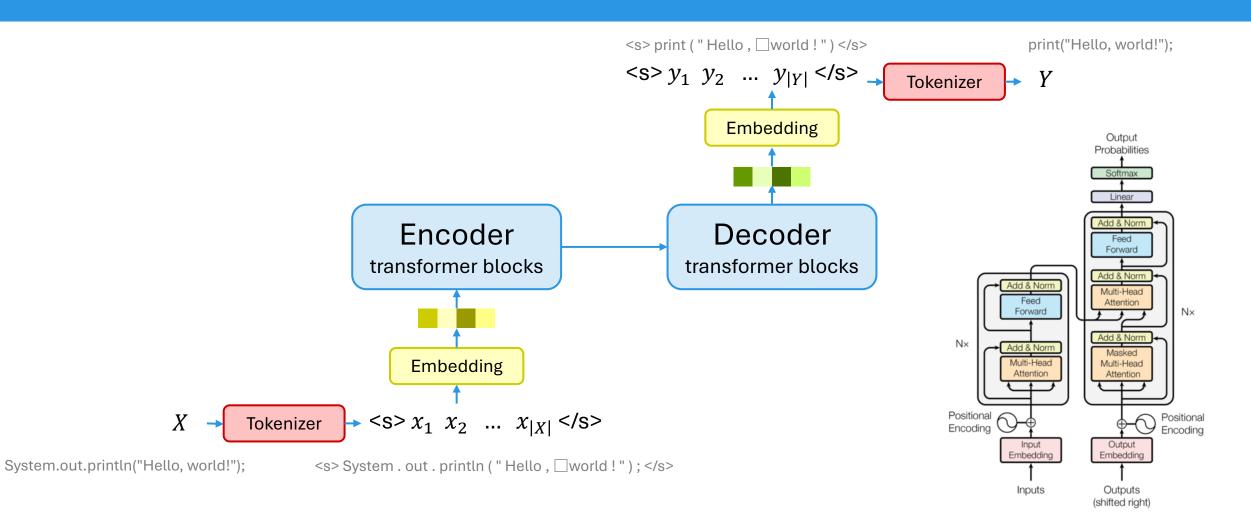
X	Y
Chinese sentence	English sentence
news article text	title



Architecture of Seq2Seq Model



Components



Tokenizer

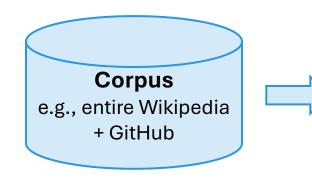
- Used to be...
 - Tokenize by whitespace / regex
 - Use PL's tokenizer
 - Sub-tokenize (important for PLs)
 - Tokens not seen in the training set = <UNK>
- Data-driven approach: byte-pair encoding (BPE)

```
String inputPath = args[1];
String inputPath = args [ 1 ] ;
String input Path = args [ 1 ] ;
```

Byte-Pair Encoding

inputs: corpus, vocabulary size v outputs: the vocabulary

- initialize the vocabulary with base tokens
- while |vocabulary| < v
 - find the most common bigram in corpus
 - add that bigram as a new token



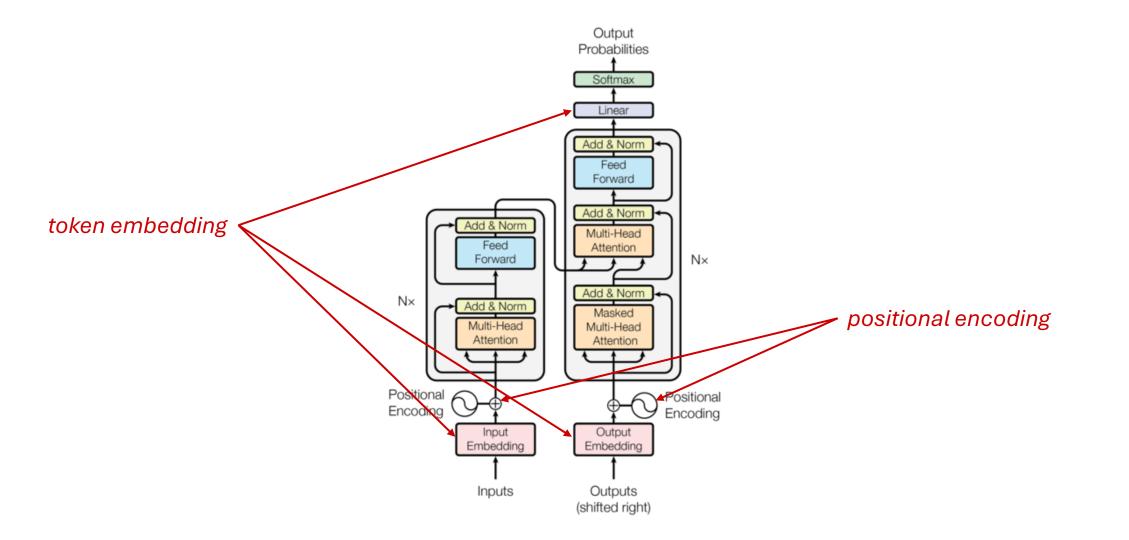
Vocabulary

- <s>
- </s>
- a
- b
- C
- ... (all the 256 bytes)
- ... (and maybe some Unicode)
- an
- un
- ...
- and

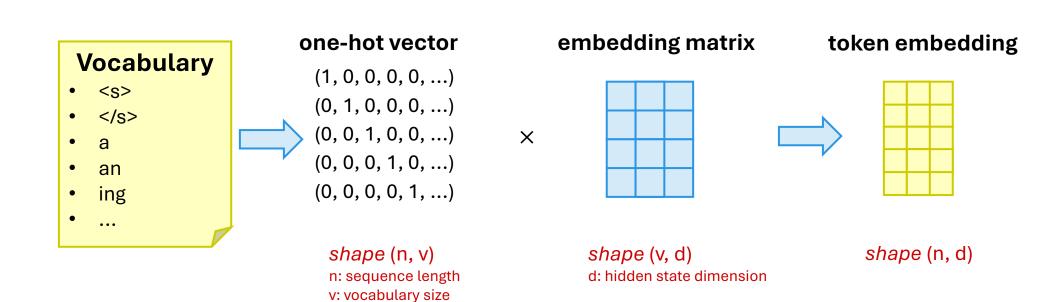
• • •

ing

Embedding

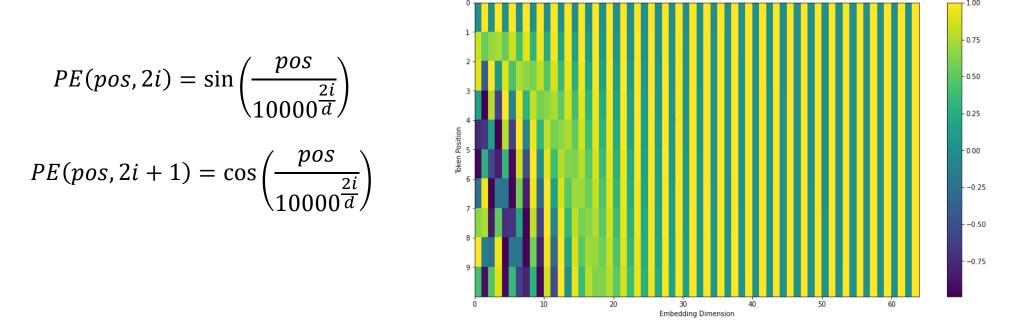


Token/Word Embedding



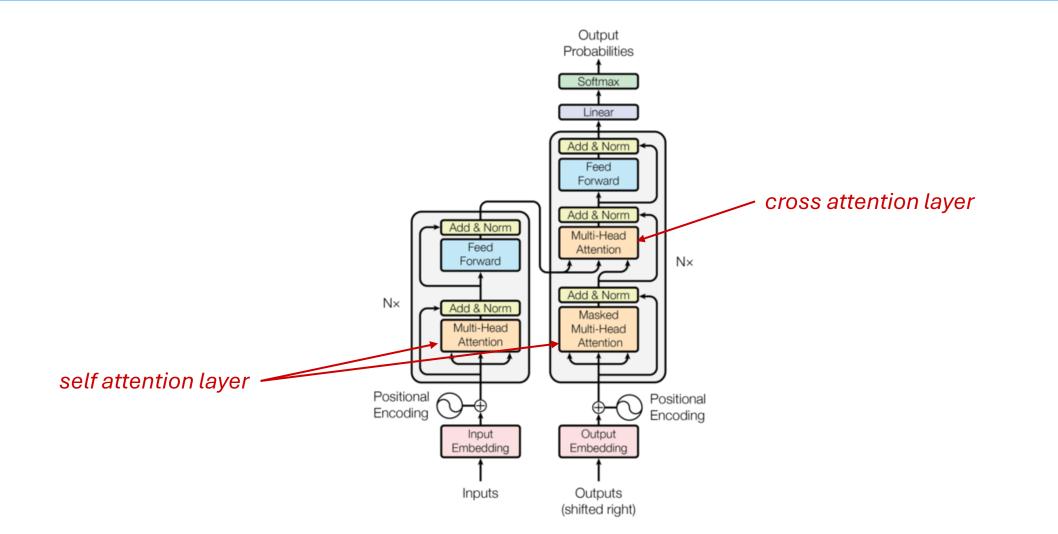
Positional Encoding

 Transformers ≠ recurrent neural network; we need something to represent the order of tokens

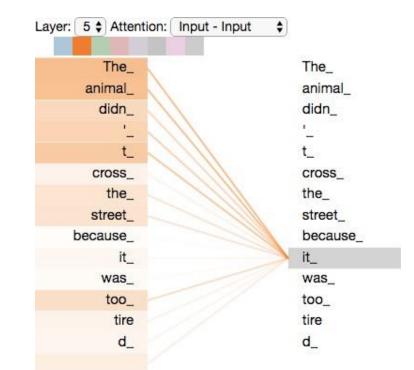


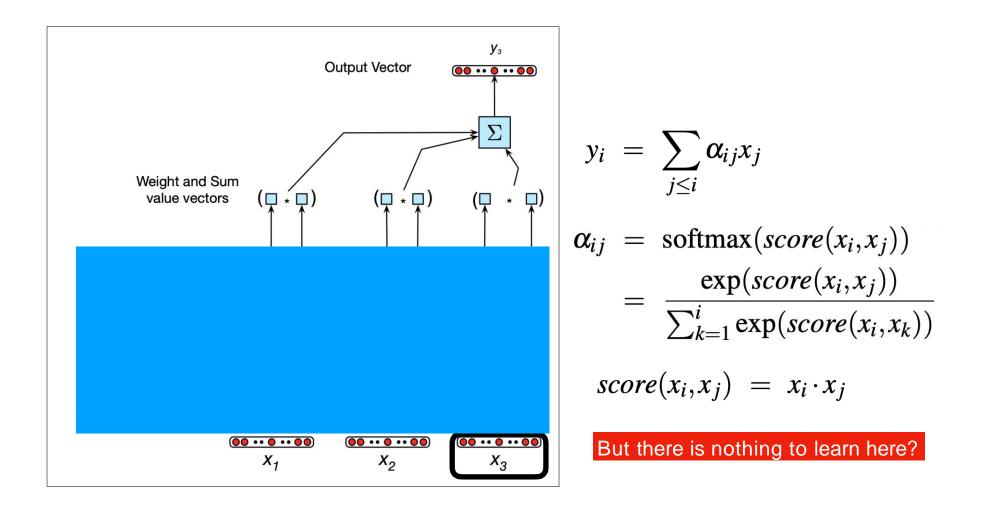
Alternative approaches: learned position embedding, attention bias (https://arxiv.org/pdf/2108.12409)

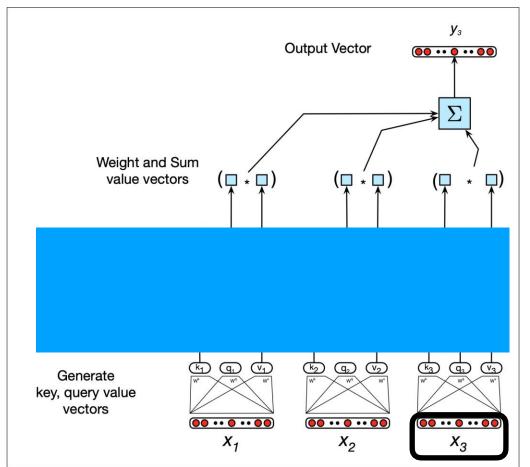
Attention



- Consider: "The animal didn't cross the street because it was too tired"
- What meaning should we associate with the word "it"?



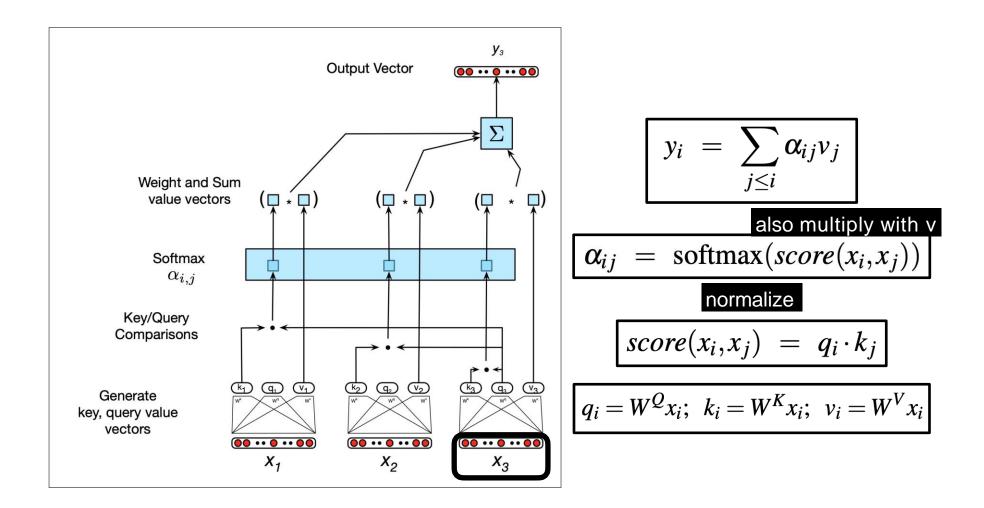




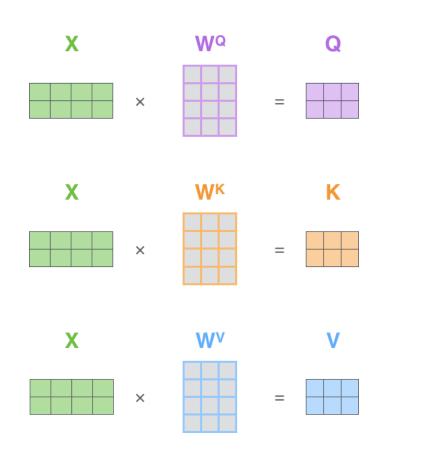
Introducing 3 types of weights, corresponding to 3 roles of each word **w**:

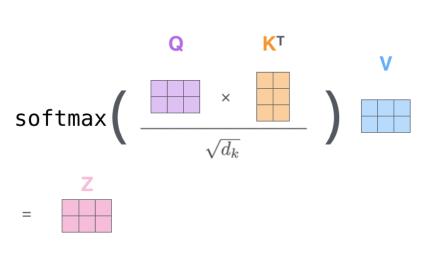
- Query: w is the current word under question
- **Key**: w is the word in context being compared with
- Value: learnable weights for the output

$$q_i = W^Q x_i; \ k_i = W^K x_i; \ v_i = W^V x_i$$



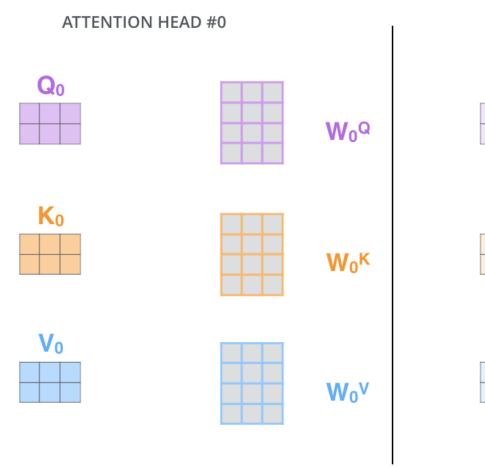
Self-attention in one graph

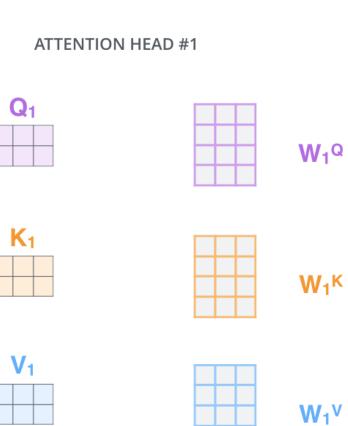


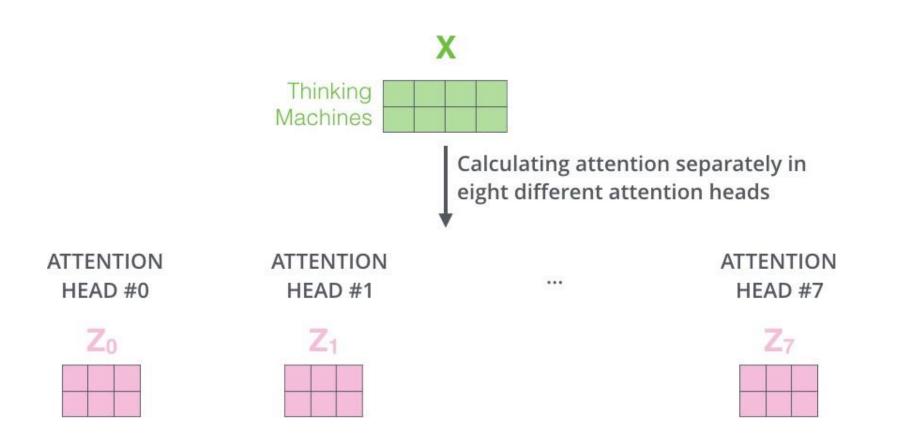


This is called one attention "head"...

• Or, the beast with many heads







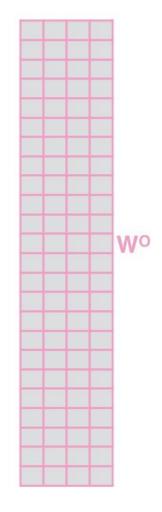
1) Concatenate all the attention heads

1) Concatenate all the attention heads

Zo	Z_1	Z ₂	Z_3	Z 4	Z 5	Z ₆	Z 7

2) Multiply with a weight matrix W⁰ that was trained jointly with the model

Х

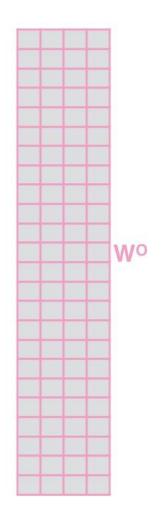


1) Concatenate all the attention heads

Zo	Z 1	Z ₂	Z_3	Z 4	Z 5	Z 6	Z 7

2) Multiply with a weight matrix W⁰ that was trained jointly with the model

Х



3) The result would be the Z matrix that captures information from all the attention heads. We can send this forward to the FFNN

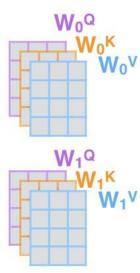
1) This is our 2) We embed input sentence* each word*

* In all encoders other than #0, we don't need embedding. We start directly with the output of the encoder right below this one

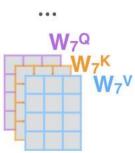
1) This is our 2) input sentence* ea

2) We embed each word* 3) Split into 8 heads. We multiply X or R with weight matrices

* In all encoders other than #0, we don't need embedding. We start directly with the output of the encoder right below this one

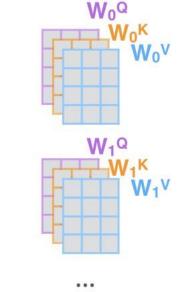


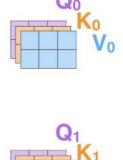
R



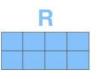
1) This is our 2) V input sentence* eac

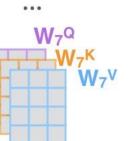
2) We embed each word* 3) Split into 8 heads. We multiply <mark>X</mark> or R with weight matrices 4) Calculate attention using the resulting Q/K/V matrices

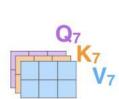




* In all encoders other than #0, we don't need embedding. We start directly with the output of the encoder right below this one







...

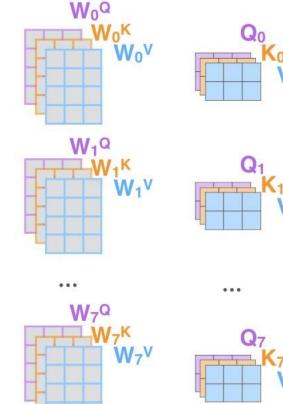
1) This is our 2) input sentence* eac

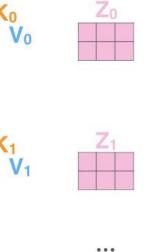
* In all encoders other than #0.

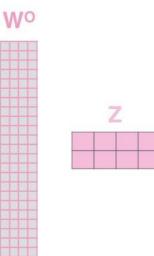
We start directly with the output of the encoder right below this one

we don't need embedding.

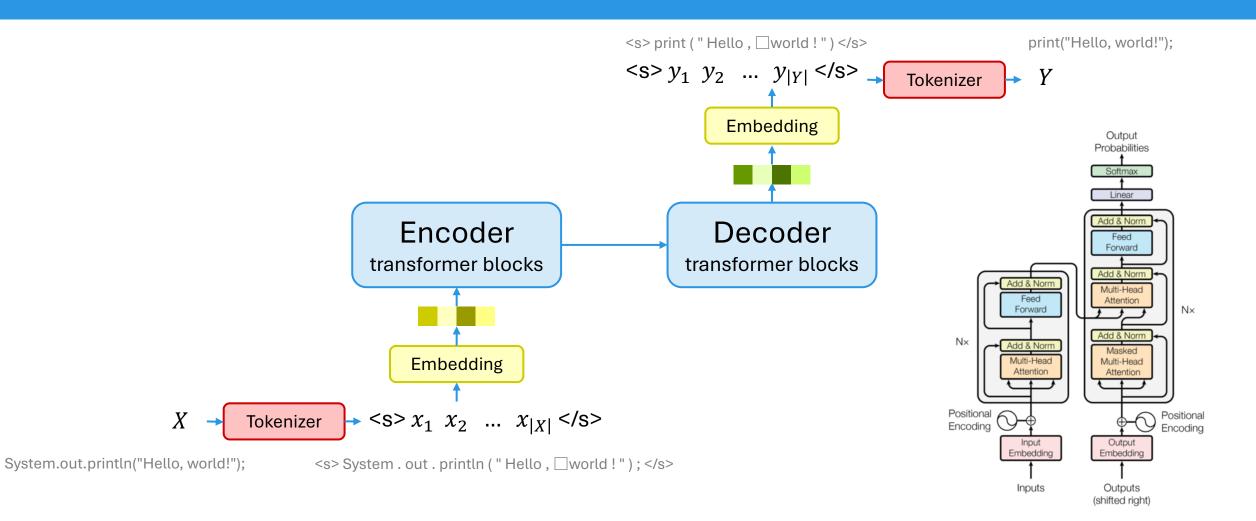
2) We embed each word* 3) Split into 8 heads. We multiply X or R with weight matrices 4) Calculate attention using the resulting Q/K/V matrices 5) Concatenate the resulting Z matrices, then multiply with weight matrix W^O to produce the output of the layer







Recap



Variants: Encoder-only and Decoder-only

- Encoder-decoder: T5, BART
 - good for transduction tasks
- Encoder-only: BERT
 - good for classification tasks
- Decoder-only: GPT, Llama
 - good for generation tasks

