
177

Design, Implementation, and Application of GPU-Based Java

Bytecode Interpreters

AHMET CELIK, The University of Texas at Austin, USA

PENGYU NIE, The University of Texas at Austin, USA

CHRISTOPHER J. ROSSBACH, The University of Texas at Austin and VMware Research, USA

MILOS GLIGORIC, The University of Texas at Austin, USA

We present the design and implementation of GVM, the first system for executing Java bytecode entirely on

GPUs. GVM is ideal for applications that execute a large number of short-living tasks, which share a significant

fraction of their codebase and have similar execution time. GVM uses novel algorithms, scheduling, and data

layout techniques to adapt to the massively parallel programming and execution model of GPUs.

We apply GVM to generate and execute tests for Java projects. First, we implement a sequence-based test

generation on top of GVM and design novel algorithms to avoid redundant test sequences. Second, we use GVM

to execute randomly generated test cases. We evaluate GVM by comparing it with two existing Java bytecode

interpreters (Oracle JVM and Java Pathfinder), as well as with the Oracle JVM with just-in-time (JIT) compiler,

which has been engineered and optimized for over twenty years. Our evaluation shows that sequence-based

test generation on GVM outperforms both Java Pathfinder and Oracle JVM interpreter. Additionally, our

results show that GVM performs as well as running our parallel sequence-based test generation algorithm

using JVM with JIT with many CPU threads. Furthermore, our evaluation on several classes from open-source

projects shows that executing randomly generated tests on GVM outperforms sequential execution on JVM

interpreter and JVM with JIT.

CCS Concepts: • Software and its engineering→ Object oriented languages; Interpreters; Runtime environ-

ments; Software testing and debugging.

Additional Key Words and Phrases: Java bytecode interpreter, Graphics Processing Unit, Sequence-based test

generation, Shape matching, Complete matching

ACM Reference Format:

Ahmet Celik, Pengyu Nie, Christopher J. Rossbach, and Milos Gligoric. 2019. Design, Implementation, and

Application of GPU-Based Java Bytecode Interpreters. Proc. ACM Program. Lang. 3, OOPSLA, Article 177

(October 2019), 28 pages. https://doi.org/10.1145/3360603

1 INTRODUCTION

Graphics Processing Units (GPUs), are widely available nowadays on commodity hardware [Amazon
2018; Azure 2018; Google 2018]. Despite widespread availability and massive compute density,
using GPUs for general purpose workloads remains challenging and is usually done by a few
skilled programmers. Migrating an application to GPUs requires substantial change to the design
of the application and fine-tuning to extract good performance. Code for GPUs is usually written

Authors’ addresses: Ahmet Celik, The University of Texas at Austin, Austin, TX, 78712, USA, ahmetcelik@utexas.edu;

Pengyu Nie, The University of Texas at Austin, Austin, TX, 78712, USA, pynie@utexas.edu; Christopher J. Rossbach, The

University of Texas at Austin and VMware Research, Austin, TX, 78712, USA, rossbach@cs.utexas.edu; Milos Gligoric, The

University of Texas at Austin, Austin, TX, 78712, USA, gligoric@utexas.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2019 Copyright held by the owner/author(s).

2475-1421/2019/10-ART177

https://doi.org/10.1145/3360603

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 177. Publication date: October 2019.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3360603
https://doi.org/10.1145/3360603

177:2 Ahmet Celik, Pengyu Nie, Christopher J. Rossbach, and Milos Gligoric

in low-level native languages (CUDA [NVIDIA 2019] or OpenCL [Khronos 2019]). Thus existing
applications, particularly those written in a higher-level language such as Java, cannot benefit from
GPUs out-of-the-box.
Several research [Catanzaro et al. 2010; Hayashi et al. 2013; Klöckner et al. 2012; Palkar et al.

2018; Prasad et al. 2011; Rossbach et al. 2013] and industrial projects [Gregory and Miller 2012;
Oracle 2019d] have tried to extend high-level languages with support for GPUs. The goal of these
projects was to speed up parts of applications that can benefit from data parallelism. Applications
that manipulate streams or use explicit loops can benefit from parallel processing by moving
computation to GPUs. These projects follow a two step workflow. First, a developer would manually
modify code to expose fragments that are a good fit for a GPU by adding annotations [GPU 2019;
Rossbach et al. 2013], extending specific classes [Pratt-Szeliga et al. 2012; Zaremba et al. 2012], or
coding with GPU-friendly parallel patterns [Brown et al. 2011; Rossbach et al. 2013]. Second, those
code fragments would be translated to CUDA or OpenCL either at compile time or at runtime.

Unfortunately, no prior work supports parallel execution of a large number of independent Java
processes on GPUs; we assume that each process executes an independent task and uses various
language features (e.g., object allocation, dynamic dispatch), native methods, and the Java Class
Library (JCL). A system that enables this could accelerate various applications, including sequence-
based test generation [Visser et al. 2006], execution of randomly generated tests [Pacheco et al.
2007], testing software product lines [Kim et al. 2013], symbolic execution [King 1976], software
model checking [Godefroid 1997; Visser et al. 2003], etc. In other words, it would be an environment
appropriate for Java processes that share code and execute similar sequences of instructions.

We present a design and implementation of GVM, the first system for running lightweight Java
bytecode interpreters entirely on GPUs. Each Java bytecode interpreter, dubbed tinyBee, is executed
by a single GPU thread. All tinyBees in the system share code (i.e., classfiles), but each tinyBee

has its own heap, static area, operand stack, frame stack, and program counter. tinyBees support
many features, including class loading, exception handling, dynamic dispatch, etc. Thus, tinyBees
can execute a variety of applications, including those that manipulate objects on the heap or use
the JCL. Moreover, tinyBees can handle native methods via an interface similar to JNI [Oracle
2019c] and MJI [Visser et al. 2003]. A significant challenge for running independent bytecode
interpreters on a GPU is extracting good performance from the GPU’s underlying SIMD execution
model, which is designed for large numbers of threads that mostly follow the same control flow
path. GVM targets large scale testing workloads that naturally have substantial common control
flow during execution and execute in similar amount of time.
We applied GVM to generate and execute tests for Java projects. First, on top of GVM, we

implemented the first parallel systematic sequence-based test generation technique. In a sequence-
based test generation technique each generated test is a sequence of method calls in the system
under test [Visser et al. 2006]. In our implementation, each tinyBee executes one unique sequence
of method calls. We designed and developed two algorithms that explore different numbers of test
sequences and use two approaches to avoid redundant method sequences. Our algorithms explore
the same method sequences as existing sequential algorithms that run on a CPU, thus providing the
same guarantees. Second, we use GVM to execute randomly generated tests [Pacheco et al. 2007],
which do not necessarily have common execution paths.

We compared our test generation algorithms to those that run on existing Java interpreters:
Oracle JVM (i.e., java with -Xint option) and Java Pathfinder (JPF) [Java Pathfinder 2019; Visser
et al. 2003], as well as Oracle JVM with JIT. We used several data structures from the original work
on systematic sequence-based test generation and follow-up studies [Pacheco et al. 2007; Visser
et al. 2003]. Additionally, GVM achieves performance parity with JVM with JIT using many CPU
threads; the best configuration of GVM even outperforms JVM with JIT. Our evaluation, using

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 177. Publication date: October 2019.

Design, Implementation, and Application of GPU-Based Java Bytecode Interpreters 177:3

several classes from open-source projects, also shows that executing randomly generated tests on
GVM outperforms sequential execution on JVM interpreter and JVM with JIT.

The main contributions of this paper include:

⋆ The first system, dubbed GVM, for running lightweight Java bytecode entirely on GPUs. GVM
targets applications that require execution of a large number of similar tasks and share code.

⋆ The first work on parallel sequence-based test generation and execution of randomly generated
test cases on GPUs.

⋆ The first set of algorithms for sequence-based testing appropriate for massively parallel environ-
ments that avoids redundant test method sequences.

⋆ Evaluation of GVM for two use cases: sequence-based test generation and execution of randomly
generated tests. We also compare GVMwith two existing interpreters and Oracle JVM with JIT to
understand the current benefits and limitations. Our evaluation further compares and contrasts
results of sequence-based test generation when using multiple CPU threads and multiple GPUs.

Artifacts related to GVM are available at: http://cozy.ece.utexas.edu/gvm

2 BACKGROUND

This paper adopts NVIDIA nomenclature because we use NVIDIA GPUs and CUDA [NVIDIA 2019].
The same concepts generalize to other GPU hardware and frameworks [Blythe 2006; Khronos 2019].

A CUDA program offloads computation to a GPU by calling massively multi-threaded parallel
functions or kernels. The programming and execution models expose a tiered hierarchy of threads.
At the lowest level, groups of cooperating threads are mapped to streaming multiprocessors (SM)
and executed concurrently. SMs comprise an L1 data cache, scratch-pad memory, and a small
number of SIMD or vector cores. GPU kernels are launched with tens or hundreds of CTAs, or
cooperative thread arrays which over-subscribe the SMs; a hardware scheduler maps CTAs to SMs.
Global memory, which is accessible to all CTAs, buffers data between kernel dispatches and

forms the basis of CPU-GPU communication. CTAs execute in SIMD chunks called warps, which
comprise 32 threads in NVIDIA hardware. Warps are the most basic unit of scheduling on the GPU.
Warps are also the primary unit of vectorized execution, so instructions in a warp are processed
in lock step. As a result, GPU execution is most efficient when all threads in a warp follow the
same control path. Additionally, GPUs typically comprise 10s of SMs, each with multiple vectorized
execution units, each thread of which can produce unique high-latency loads or stores on any
given cycle. Consequently, the demand for memory bandwidth is a critical performance concern.
The hardware deals with this by hiding memory latency (a cache miss can be 100s of cycles) with
aggressive hardware multi-threading, switching warp contexts frequently at instruction granularity
whenever loads or stores miss in the cache hierarchy. The vectorized execution model and need to
hide memory latency with memory-level parallelism are key performance determinants for GPU
codes, and are characterized with first-class metrics: memory efficiency and thread divergence [Kerr
et al. 2009].
Memory efficiency characterizes global memory access spatial locality and the degree to which

code utilizes available bandwidth to global memory. GPUs coalesce global memory accesses for
threads whenever possible, but accesses that are not sequentially aligned can result in separate
transactions for each element requested, reducing memory bandwidth utilization. Conversely,
higher memory efficiency translates to higher bandwidth utilization and thus performance. It is
common for GPU codes to be optimized to maximize memory coalescing and by maximizing the
degree to which in-flight memory references can be overlapped with arithmetic operations.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 177. Publication date: October 2019.

http://cozy.ece.utexas.edu/gvm

177:4 Ahmet Celik, Pengyu Nie, Christopher J. Rossbach, and Milos Gligoric

__global__ void interpret() {

 initialize();

 switch(opcode) {

 case aload_0: B(); break;

 case iload_0: C(); break;

 }

 shutdown();

}

 initialize

 branch

 shutdown

 C

 B

Fig. 1. Serialization of divergent control flow in a SIMD/SIMT execution model. The hardware executes both

branches of the conditional, ensuring that only the effects of vector lanes corresponding to the case being

executed are made visible by the hardware. The impact on performance is that control execution latency is

the sum of the latency for each distinct control flow path.

typedef struct {

handle uid; handle nameref;

uint16_t instance_fields_count;

uint16_t static_fields_count;

handle fields_index;

uint16_t methods_count;

handle methods_index;

handle superclass;

handle constant_pool_index;

// ...

} Classinfo;

(a) Class representation

typedef struct {

handle uid;

uint16_t max_locals;

uint16_t num_args;

handle declaring_class;

handle code_index;

handle exception_table_ix;

int8_t native_id;

// ...

} Methodinfo;

(b) Method representation

typedef struct {

handle declaring_class;

handle type;

uint32_t offset;

// ...

} Fieldinfo;

(c) Field representation

Fig. 2. Representation of a class, method, and field in GVM. Unlike existing interpreters that run on CPU,

GVM has a unique layout without any pointer, non-primitive values, and data structures.

class BinTree { ...

private Node root;

void add(int x) {...}

boolean remove(int x) {...} }

(a)

class Node { ...

public int value;

public Node left;

public Node right; }

(b)

Fig. 3. Simplified binary search tree example in Java.

Thread divergence (see Figure 1) occurs when threads within a warp take different control paths,
forcing the hardware to serially execute each branch path taken. When executing conditional code,
a warp will first execute the łifž branch, and then the łelsež part. The hardware deals with the
effects of divergent control flow with hardware predication, effectively disabling threads that are
not on the currently executing control flow path by discarding their architecturally visible changes.
Non-uniform control flow can incur significant performance penalties because execution latency is
the sum of the latency for each distinct control path. Consequently, codes with abundant irregular
control flow and pointer-chasing can effectively under-utilize the GPU’s parallel hardware.

GVM runs a large number of parallel tinyBees by assigning a GPU thread to each. Each tinyBee

performs a different task (e.g., by generating a different sequence of tests), so there is significant
potential for high thread divergence and low memory efficiency. Because they can become the
first order term for performance, improving memory efficiency and minimizing divergence are key
design goals for GVM. GVM minimizes the impact of thread divergence and improves memory
efficiency with a combination of data layout, algorithm design, and thread scheduling techniques,
as we discuss in detail in Section 3.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 177. Publication date: October 2019.

Design, Implementation, and Application of GPU-Based Java Bytecode Interpreters 177:5

ci BinTree 1 0 fi 2 mi -1 pi ci+1 Node 3 0 fi+1 0 -1 -1 pj

ci ci +1

Classinfo

ci ci+1 0 ci+1 int 0 ci+1 ci+1 1 ci+1 ci+1 2

fi

root

fi +1

value

fi +2

lef t

fi +3

r iдht

Fieldinfo

mi 3 1 ci bi -1 -1 mi+1 3 1 ci bj -1 -1

mi

add (int)

mi +1

r emove(int)

Methodinfo

ALOAD_0 GETFIELD ASTORE_2 ALOAD_0 . . . ALOAD_0 GETFIELD ASTORE_2 ACONST_NULL . . .

bi bj

Code

Fig. 4. Illustration of the packaged Classinfo, Methodinfo, and Fieldinfo for the example in Figure 3; -1

indicates that the entry should not be used or an entity does not exist.

3 GPU-BASED JAVA BYTECODE INTERPRETER

This section describes a high-level overview of the main execution phases in GVM, state represen-
tation of bytecode interpreters, and supported Java features.

3.1 Phases and Data Layout

GVM has four phases: packaging, transferring, scheduling, and interpreting.

Packaging phase: In the initial phase of the execution, which runs on the host CPU, GVM takes
all classes available on the classpath and packages their content in a format suitable for interpreters
running on GPUs. Our representation of classes, which is similar to the original Sun’s Java, differs
from existing interpreters that run on a CPU (e.g., Jikes RVM and JPF) as we assiduously avoid
data structures and reference patterns that introduce additional indirection and cause unnecessary
control flow or irregular memory access patterns on the GPU. GVM avoids pointers and nested
structures: fields that would be pointers in a CPU-based implementation are replaced by handles,
which turn pointer indirection into offset-based indexing into arrays. This makes the in-memory
representation of data structures address-space independent, so pointers need not be updated as
classfiles move between CPU and GPU memory. To maximize memory efficiency, GVM does not
use any container data structures other than arrays.
We first describe the packaging of individual classfiles and then our techniques for merging

packaged classfiles together. (Our description of the layout does not describe every detail of our
implementation; we cover the key steps that are also needed for later text.) The design of GVM
envisions the packaging to be directly implemented by the Java compiler; our prototype implements
this out-of-band by post-processing classfiles produced by an unmodified Java compiler.
There is one instance of the Classinfo struct per classfile; a part of Classinfo is shown in

Figure 2a. Each class has a unique uid (which is the handle for that class), a handle of its name
on the heap, number of instance and static fields, a handle of the first field, number of methods, a
handle of the first method, a handle of its parent class, and a handle of its constant pool. For each
method in a class there is an instance of the Methodinfo struct; a part of Methodinfo is shown
in Figure 2b. Besides a unique uid, there is also the number of arguments and maximum local
variables, a handle of declaring class, a handle of the beginning of bytecode instructions for this
method, and a handle to the exception table. Similarly, each field in the class has an instance of the
Fieldinfo struct (Figure 2c). Each field has a handle of the declaring class, a handle of its type,
and the offset in an object.

GVM uses arrays to encode bytecode instructions for all methods in the class (int8_t[]), excep-
tion tables for all methods in the class (int32_t[]), and a constant pool for the class (int32_t[]).

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 177. Publication date: October 2019.

177:6 Ahmet Celik, Pengyu Nie, Christopher J. Rossbach, and Milos Gligoric

We encode long and double values with two int32_t. Each constant in the pool takes an extra
slot that keeps the type of the constant (e.g., CONSTANT_Integer). Each exception table entry takes
three slots: the first slot is the starting bytecode index supported by the exception handler, the
second slot is the ending bytecode index supported by the exception handler, and the third slot is
the bytecode index of the exception handler. All entries in the exception table are kept in the same
order as in the original bytecode, so that the handlers are checked in the appropriate order once an
exception is thrown.

Once each classfile is packaged, GVM performs global packaging of all classfiles together. Figure 4
illustrates the result of the global packaging for example classes in Figure 3; note that Figure 4 does
not show classes from the Java Class Library (JCL). GVM creates one array for all instances of
Classinfo, Methodinfo, Fieldinfo, code, exception tables, and constant pools. During the global
packaging, GVM assigns unique ids (i.e., handles) to classes, methods, and fields; each unique id
corresponds to the index of the element in the array. Additionally, GVM initializes all handle fields
to appropriate values.
GVM currently packages classes from JCL at the beginning of the arrays to enable further

optimization as those classes need not be re-packaged across runs.

Transferring phase: In the second phase, which is initiated on the host CPU, GVM allocates
memory on the device and transfers the data packaged in the previous phase to the GPU. There is
only one copy of each array, because the packaged data is constant and shared by all interpreters.

In the transferring phase, GVM also allocates device memory for the heap (int32_t[]) and static
area (int32_t[]). Unlike shared constant data for classfiles, each tinyBee has a separate heap
and static area. The static area contains one handle for each class in the system; these handles are
initialized during class loading with locations of class metadata (i.e., Class) on the heap. A part of
the heap is initialized on the host CPU to include all String constants from the constant pools for
all classes in the system; this part of the heap will be shared among all tinyBees. The rest of the
heap and the entire static area are initialized with zeros. To ensure in-memory state is address-space
independent at arbitrary points in tinyBee execution, GVM uses handles for transient data rather
than traditional pointers (see Section 3.2).

Scheduling phase: In the scheduling phase, GVM determines the number of tinyBees to spawn at
once, as well as the way tinyBees are assigned to warps. GVM currently supports two scheduling
approaches: (a) assign one tinyBee to each thread in a warp, and (b) assign one tinyBee to one
warp (and leave 31 threads in the warp unused). GVM uses profile-guided heuristics to determine
the appropriate assignment, i.e., each scheduling decision is based on prior runs. GVM measures
thread divergence dynamically using the non-predicated warp execution efficiency (WNPEE) metric
reported by nvprof. Conceptually, when WNPEE is below a configurable threshold (25% in our
evaluation), GVM schedules only one tinyBee per warp, and otherwise defaults to scheduling one
tinyBee per hardware thread. Such a design decision has not been proposed or evaluated in prior
work, but we believe that it is very much worth further research.

Interpreting phase: Finally, GVM triggers the interpreting phase. Each interpreter determines its
own part of the heap, the static area, and main method to execute based on the GPU thread id. Next,
each interpreter dedicates local memory for the operand stack and stack frames, and initializes
necessary data (e.g., base pointer). Finally, each interpreter enters the loop to execute the bytecode
instructions; sections 3.2 and 4 provide more details about this phase.

3.2 State Representation and State Update

To illustrate the way we represent the program state and use handles, we give operational semantics
rules for a subset of Java bytecode instructions. Our goal is to illustrate program state manipulations

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 177. Publication date: October 2019.

Design, Implementation, and Application of GPU-Based Java Bytecode Interpreters 177:7

top′ = top + 1 OS ′ = OS[FS(bp + index + 1)/top]

⟨aload index,pc,bp, top, FS,OS, · · ·⟩ ⇒ ⟨CO(pc + 2),pc + 2,bp, top′, FS,OS ′, · · ·⟩

top′ = top − 1 FS ′ = FS[OS(top − 1)/bp + index + 1]

⟨astore index,pc,bp, top, FS,OS, · · ·⟩ ⇒ ⟨CO(pc + 2),pc + 2,bp, top′, FS,OS ′, · · ·⟩

OS ′ = OS[DA(OS(top − 1)) + FIs(CP(index)).offset/top − 1]

⟨getfield index,pc, top,OS,DA, · · ·⟩ ⇒ ⟨CO(pc + 3),pc + 3, top,OS ′,DA, · · ·⟩

top′ = top − 2 DA′ = DA[OS(top − 1)/OS(top − 2) + FIs(CP(index)).offset]

⟨putfield index,pc, top,OS,DA, · · ·⟩ ⇒ ⟨CO(pc + 3),pc + 3, top′,OS,DA′, · · ·⟩

top′ = top + 1 OS ′ = OS[SA(FIs(CP(index)).declaring_class + FIs(CP(index)).offset)/top]

⟨getstatic index,pc, top,OS,DA, · · ·⟩ ⇒ ⟨CO(pc + 3),pc + 3, top′,OS,DA′, · · ·⟩

top′ = top − 1 DA′ = DA[OS(top − 1)/SA(FIs(CP(index)).declaring_class) + FIs(CP(index)).offset]

⟨putstatic index,pc, top,OS,DA, · · ·⟩ ⇒ ⟨CO(pc + 3),pc + 3, top′,OS,DA′, · · ·⟩

top′ = top − 1 OS ′ = OS[DA(OS(top − 2) +OS(top − 1))/top − 2]

⟨aaload,pc, top,OS, · · ·⟩ ⇒ ⟨CO(pc + 1),pc + 1, top′,OS ′, · · ·⟩

top′ = top − 3 DA′ = DA[OS(top − 1)/OS(top − 3) +OS(top − 2)]

⟨aastore,pc, top,OS,DA, · · ·⟩ ⇒ ⟨CO(pc + 1),pc + 1, top′,OS,DA′, · · ·⟩

nxt ′ = nxt +CIs(CP(index)).instance_fields_count + 1 OS ′ = OS[nxt + 1/top] DA′ = DA[CP(index)/nxt]

⟨new index,pc, top,nxt,OS,DA, · · ·⟩ ⇒ ⟨CO(pc + 3),pc + 3, top + 1,nxt ′,OS ′,DA′, · · ·⟩

OS ′ = OS[nxt + 2/top − 1] DA′ = DA[OS(top − 1)/nxt]
DA′′ = DA′[intt_ix/nxt + 1] nxt ′ = OS(top − 1) + 2

⟨newarray intt_ix,pc, top,nxt,OS,DA, · · ·⟩ ⇒ ⟨CO(pc + 3),pc + 3, top,nxt ′,OS ′,DA′′, · · ·⟩

Fig. 5. Operational semantics rules for interpreters for a subset of bytecode instructions; the goal is to

illustrate the way we manipulate transient data, including heap, static area, and type information (rather

than to give operational semantics to all well-known Java bytecode instructions).

because our layout of the state differs from existing interpreters; our goal is not to change semantics
of any bytecode instruction. A key insight is that our state representation relies on handle-based
access to all program state, meaning even transient data such as the heap are accessed through
offsets rather than pointers. This makes state representation address-space independent at all times,
enabling individual tinyBees to be context switched at arbitrary points during program execution.
While our prototype does not yet rely on this feature, we envision it to be an important feature for
GVM to efficiently deal with hardware over-subscription in any production deployment.
Configuration for a tinyBee includes several components:

⟨ inst , pc , sp, bp, top, nxt , FS , OS , DA, SA ⟩

where inst is a bytecode instruction; pc is the program counter; sp is the stack pointer for stack
frames; bp is the base pointer for stack frames; top is the top of the operand stack (pointing to the
first available slot); nxt is the next free location on the heap; FS is the frame stack;OS is the operand
stack; DA is the heap area; SA is the static area. inst refers to all bytes in the instruction, and we
use symbolic names for the opcode and other bytes in our rules. All non-primitive components are

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 177. Publication date: October 2019.

177:8 Ahmet Celik, Pengyu Nie, Christopher J. Rossbach, and Milos Gligoric

implemented as int arrays; FS , OS , DA, SA are partial functions from array indexes to integers
(Int ⇁ Int). Additionally, we assume that code (CO), constant pool (CP), Fieldinfos (FIs), Method-
infos (MIs), and Classinfos (CIs) are available in the context. As discussed earlier these are
constant throughout the execution; we use a partial function from array indexes to integers for code
(Int ⇁ Int), and partial functions from array indexes to an instance of a Fieldinfo, Methodinfo,
and Classinfo for FIs ,MIs , and CIs , respectively. Note that inst is equal to CO(pc), but we carry
both for convenience to avoid parsing bytes of each instruction within our rules.
Figure 5 shows the rules for tinyBees. We cover a couple of representative groups, e.g., local

variable read/write, field read/write, array read/write, and allocation. In each rule, we show only
the relevant part of the configuration, i.e., components that are accessed or modified. We use · · · to
denote other components in the configuration [Ellison and Roşu 2012]. We also use the following
operations: (1) component lookup _(_) (Component × Int ⇁ Int), (2) component update _[val/loc]
(Component × Int × Int → Component), and (3) component member access _._ (Component ×

Name ⇁ Int).
For the simplicity of exposition, the rules do not show class loading, exception handling, and

assume that applications only use (small) integer constants and variables. Our implementation has
none of these limitations. We use the following stack frame and the frame stack grows towards
larger memory addresses:

... higher address

locals (local_0 is at the lowest address)

old base pointer

current_method handle

top of the operand stack

return address/pc ↑

... lower address

Examples: We briefly describe the rules for several instructions. aload is a two-byte instruction
that loads a reference onto the operand stack from a local variable index (which is given as the
second byte). The local variable is obtained from the frame stack FS(bp + index + 1). The value is
placed on top of the operand stack and the stack pointer is moved to the next location.
getfield is a three-byte instruction that gets a field value of an object; the second and third bytes

specify index of the field being accessed. The rule first finds the offset of the field FIs(CP(index)).offset
and then finds the value of the field on the heap. The obtained value is placed on the operand
stack; we do not update the top of the stack because the rule overrides the object reference with
the fetched value.
The new instruction, which allocates an object on the heap, has three bytes; the first byte is

the opcode and the remaining two bytes constitute the index into the constant pool that contains
Classinfo corresponding to the type to be allocated. At the next available place on the heap we
put the handle for the type of the object (DA′ = DA[CP(index)/nxt]). On top of the operand stack
we place the handle for the object, which is the first location after the type (OS ′ = OS[nxt + 1/top]).
The rule also updates the top of the operand stack, as well as the next available location on the
heap; the next location is immediately after the fields of the allocated object.

Finally, newarray instruction allocates an array of the given type; the type is given as the second
byte and it is an index into the constant pool for the current class. On the heap, we first place
the length of the array (DA′ = DA[OS(top − 1)/nxt]); the length for newarray is given on top
of the operand stack. Next, we place the type of the elements at the next location on the heap
(DA′′ = DA′[intt_ix/nxt + 1]). On top of the operand stack we place the array handle, i.e., index of
the first element after the element type. As the final step, the rule updates the pointer to the next
available location on the heap.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 177. Publication date: October 2019.

Design, Implementation, and Application of GPU-Based Java Bytecode Interpreters 177:9

4 IMPLEMENTATION DECISIONS

This section briefly describes our implementation decisions and touches on several limitations;
Section 8 describes the limitations in much greater detail.

Bytecode instructions: GVM supports the Java 7 language specification and class-format version
51. Thus, it supports all existing Java bytecode instructions except invokedynamic, monitorenter,
and monitorexit. invokedynamic simply requires additional engineering. As our current focus is
on sequential applications, we had no need to support monitorenter and monitorexit; supporting
concurrency in GVM is an exciting future direction.

Java Class Library (JCL): Code packaged for the execution on GPUs includes many classes
from JCL (mostly from java.lang and java.util packages). The list of classes to be included is
configurable and specified manually at the moment. Recall that GVM does not require any change
to the original source code for any class.

Native methods: Several methods in JCL are not written in Java, i.e., these methods are im-
plemented as native method. Clearly, these methods cannot be directly executed by a bytecode
interpreter [Visser et al. 2003]. If native methods have side effects, we have to implement those
methods to ensure that the effect is reflected in the memory of the interpreter. We support native
methods via an interface similar to JNI [Oracle 2019c]. So far, we have written in CUDA over
90 native methods that we encountered in JCL (e.g., Object.clone); JCL has around 900 native
methods, but not all native methods make sense to run on GPU.

Reflection: We used our support for native methods to implement various methods related to
reflection API in Java. We support methods in java.lang.reflect.Array, java.lang.Class, etc.
Our support for reflection so far was demand driven.

Garbage collector (GC): tinyBee includes no garbage collector. Specifically, we follow what the
Java community calls: Epsilon Garbage Collector [Oracle 2019b], i.e., a passive GC implementation
with bounded allocation limit that crashes the application once the memory limits are exceeded.
This approach is described in JEP 318 [Oracle 2019b], and support for the EpsilonGC was officially
released in Java 11. As described in the JEP, this GC is ideal for łExtremely short lived jobsž. As
we will see in the next section, we can implement support for proper GC algorithms because we
already have full heap traversal support.

GPUmemory: We keep most of the data in global memory. We do not utilize the constant memory,
because the size of the packaged code far exceeds the limits for the constant memory; we also did
not use texture memory as it provided no performance improvements based on our initial profiling.

Exception handling: Our support for exception handling is straightforward. Once an exception
is thrown, we find the handle for the current method; recall (Section 3.2) that we keep this info
readily available in each stack frame. Using the method handle we access the exception table and
check if any exception handler for the current method can catch the thrown exception. If yes, we
extract the next value for the pc from the exception table; otherwise, we find the previous method
on the frame stack and repeat the steps. Finally, if no exception handler is found, the tinyBee halts
the execution and sets an appropriate exit flag.

5 SEQUENCE-BASED TEST GENERATION

This section presents the first use case of GVM. We describe systematic sequence-based test
generation [Visser et al. 2006], as well as our algorithms for parallel sequence-based test generation
on GPUs by utilizing GVM. Our algorithms are the first effort to parallelize sequence-based test
generation and they are also applicable to parallel runs on CPUs.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 177. Publication date: October 2019.

177:10 Ahmet Celik, Pengyu Nie, Christopher J. Rossbach, and Milos Gligoric

class BinTreeDriver {

public static void main(String[] args) {

// int M = ...; int N = ...; int P = 1;

BinTree t = new BinTree();

for (int i = 0; i < M; i++) {

int v = VS_toss(N);

int p = VS_toss(P);

switch (p) {

case 0: t.add(v); break;

case 1: t.remove(v); break; }

ignoreIf(store(cksum(t))); }}}

Fig. 6. Test driver in Java for the BinTree example.

5.1 Test Generation Drivers

Sequence-based test generation techniques have been used for testing Java container classes [Pacheco
et al. 2007; Visser et al. 2006]. As the input, these techniques take a system under test, list of methods
of interest, and max length of each sequence. For the given input, these techniques exercise all
method sequences up to the given sequence length. For example, for the BinTree class in Figure 3a,
the following list includes all the sequences of length two:

t.add(val); t.add(val); // val
right
−−−−→ val

t.add(val); t.remove(val); // empty tree

t.remove(val); t.add(val); // val

t.remove(val); t.remove(val); // empty tree

The original work on systematic sequence-based test generation was built on top of the Java
Pathfinder (JPF) software model checker [Java Pathfinder 2019; Visser et al. 2003]. JPF implements a
backtrackable Java bytecode interpreter; JPF itself is implemented in Java and it executes programs
sequentially. To check all sequences of method calls, a user has to write a test driver as shown
in Figure 6. The driver creates an instance of a tree and iterates over the loop M times; M is the
maximum length of method sequences. In each iteration of the loop, the driver chooses a value
between [0, N), one of the operations (add or remove) and invokes the operation with the selected
value on the tree instance. The driver uses the VS_toss(n) [Godefroid 1997] function, which forces
the current execution to pick one value [0, N) and schedule another execution that will enforce the
subsequent value (until all values are exhausted). We discuss the code that invokes ignoreIf in
Section 5.2. An implementation of the test driver in Java (without VS_toss and software model
checker that explores all values) requires several nested loops [Sharma et al. 2011].
We next describe two test generation modes that use the driver in Figure 6; for each mode we

present our parallel algorithm for test generation on top of GVM. Our goal was to design algorithms
to ensure that the executed sequences exactly match those sequences from prior work. In other
words, our goal was not to increase the quality of generated sequences but to accelerate generation
of sequences that were already evaluated in prior work.

5.2 Shape Matching Mode

Shape matching was introduced to avoid the exponential explosion of exploring all sequences up to
the given length [Visser et al. 2003]. The key idea is to avoid extending method sequences from a
state that has been seen before. For example the following two short method sequences would lead
to the same shape: t.remove(0) and t.remove(1). In both cases the resulting tree instance would
be empty, and only one of those sequences should be extended further.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 177. Publication date: October 2019.

Design, Implementation, and Application of GPU-Based Java Bytecode Interpreters 177:11

Require: M - sequence length

Require: N - number of values

Require: P - number of operations

1: function host()

2: inQueue ← init(N , P)

3: cksum2Tid ← emptyMap(C)

4: for all level ∈ 1 to M do

5: for all iter ∈ 0..(⌈total/THRS⌉ − 1) do

6: engine⟨⟨⟨THRS⟩⟩⟩(iter ∗THRS, inQueue, cksum2Tid)

7: end for

8: genNext⟨⟨⟨C⟩⟩⟩(inQueue, cksum2Tid)

9: size ← inQueue .size

10: sort⟨⟨⟨size⟩⟩⟩(inQueue)

11: end for

12: end function

13: function engine(base, inQueue, cksum2Tid)

14: jid ← base + blockDim.x × blockIdx .x + threadIdx .x

15: choices ← inQueue[jid]

16: interpret(choices)

17: cksum ← shapeChecksum()

18: atomicMin(cksum2Tid[cksum], jid)

19: end function

20: function genNext(inQueue, cksum2Tid)

21: jid ← blockDim.x × blockIdx .x + threadIdx .x

22: inId ← cksum2Tid[jid]

23: if inId = ⊥ ∨ inId < 0 then

24: return

25: end if

26: cksum2Tid[jid] ← −inId − 1

27: choices ← atomicRemove(inQueue, inId)

28: addAllAtomic(inQueue, extend(choices,N , P))

29: end function

Fig. 7. Algorithm for the shape matching mode on GVM.We use the standard notation KERNEL<<<THRS>>> to

invoke a kernel on a GPU and spawn THRS threads in parallel. We also use CUDA built-in variables [NVIDIA

2019] (blockDim.x, blockIdx.x, threadIdx.x) to assign a unique id to each GPU thread.

In this mode, the test driver invokes ignoreIf(store(cksum(t))) (Figure 6). The cksummethod
takes as input a root of an object graph on the heap and returns checksum of the shape of the object
graph without values for primitive fields. The implementation simply traverses the object graph in
depth-first style and computes the checksum of the shape. The store method returns true if the
shape has been seen before; false otherwise. Finally, the ignoreIf method stops the execution of
the current sequence if the argument evaluates to true.

Prior work on shape matching showed that breadth-first execution of method sequences outper-
forms other traversal strategies in terms of code coverage for code under test. In the breadth-first
order all sequences of length 1 are executed before sequences of length 2.
Figure 7 shows our novel algorithm for systematic execution of method sequences with shape

matching on top of GVM. We designed the algorithm to guarantee that the same sequences of
method calls are executed as with the sequential breadth-first traversal. This is also the first parallel
algorithm for sequence-based test generation with shape matching.
The inputs to the algorithm include: sequence length (M), number of distinct values to be used

as arguments to operations (N), and the number of operations (P). In the host code on CPU we

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 177. Publication date: October 2019.

177:12 Ahmet Celik, Pengyu Nie, Christopher J. Rossbach, and Milos Gligoric

allocate two data structures; both structures are allocated in the device memory. First, we allocate a
queue (inQueue) that will keep choices to be executed for the next level (in breadth-first order).
This queue is initialized with all pairs for N and P ; for N = 2 and P = 2, the initial queue would
contain: (0, 0), (0, 1), (1, 0), (1, 1). Second, we allocate an array of integers (cksum2Tid), with length
C, that represents a map from the state checksum (index of the array) to the thread id (value in the
array) of the thread that executed a sequence of operations that resulted in that checksum.
The genNext function prepares choices for the next level of the algorithm. Specifically, there

are as many hardware threads running genNext as potential checksums (C). Each thread takes a
checksum value, based on the thread id, and returns immediately if the value is equal to the sentinel
value or the value is negative. We use negative values to encode choices that were extended on one
of the previous levels. If a thread finds that the checksum was first seen on the current level, then
it sets the value in the checksum map to negative (for future invocations of this kernel) and then
extends choices for the next level based on N and P .

We give an intuition that our algorithm executes the same method sequences as the sequential
algorithm. In our algorithm, the outer loop on the host enforces that sequences of length k are
executed before sequences of length k +1. The algorithm sorts choices to ensure that a thread with
smaller id executes a sequences that is lexicographically smaller (in terms of values in choices).
If two threads execute sequences that lead to the same state checksum, our algorithm keeps the
thread with smaller id and thus an earlier sequence in lexicographical order. Using a negative value
in cksum2Tid ensures that we do not extend the same sequence twice and also ensures that any
longer sequence that result in previously seen checksum is ignored.
It is important to mention that our algorithm also has a property to schedule two choices that

differ only in the last level in two neighboring threads; this decreases divergence (Section 2), and
consequently, improves performance.

5.3 Complete Matching Mode

Shape matching may end up being too aggressive in reducing the number of executed sequences.
Complete matching uses both shape and primitive values to compute the checksum of a program
state [Visser et al. 2003]. Thus, test drivers for complete matching remain almost the same as
for shape matching; the only difference is that cksum invocation in this case computes complete
matching. Similarly, our algorithm in Figure 7 remains unchanged; we only change the function
that computes the checksum of the program state.

5.4 Multithreaded CPU Algorithm

We have adapted our algorithm from Figure 7 to CPUs. Our implementation is written in pure Java
and uses the Thread class. Specifically, instead of invoking the engine function (line 6), we start N
CPU threads, where N is specified by a user, and each thread processes an equal number of input
sequences. We follow a similar approach and spawn new CPU threads when invoking genNext

(line 8). To sort the input queue prior to the next level (line 10), we use Collections.sort. We
have also experimented with the Executors and ExecutorService classes, but discovered that
those implementations were much slower than our current implementation with Threads.

5.5 Multi-GPU Algorithm

We have also adapted our algorithm to enable sequence-based test generation on several GPUs
simultaneously. Most parts of the algorithm from Figure 7 remain unchanged. The key difference is
that we need to split the input evenly at each level and communicate among GPUs after all engine
calls are finished at each level (line 7) to ensure that there are no duplicate shapes generated on
different devices. Specifically, each device broadcasts its cksum2Tid to all other devices. Then each

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 177. Publication date: October 2019.

Design, Implementation, and Application of GPU-Based Java Bytecode Interpreters 177:13

device finds a minimum value for every index across all cksum2Tids and keeps the minimum value
in its local cksum2Tid. After this step, all GPU devices have the same view of the checksum table.
We invoke genNext on a single GPU device; execution of the genNext function is much faster than
execution of the engine function, so we do not utilize multiple GPUs for this task.

6 EXECUTION OF RANDOMLY GENERATED TESTS

Feedback-directed random test generation, as implemented in Randoop [Pacheco et al. 2007], was
introduced as an alternative to systematic sequence-based test generation. Rather than executing all
method sequences systematically, Randoop randomly chooses a method to invoke and arguments
for the method from the argument pool. Initially, the argument pool contains a small number of
constants, e.g., 0, -1, 1, null. If a method invocation is successful (e.g., no exception is thrown),
Randoop saves the method sequence, which can be extended in the future if the result of the method
sequence can be used as an argument for another randomly chosen method. Randoop generates a
large number of short-running tests, and each test includes some test oracles. Clearly, these tests
share the same codebase. Thus, we expect that GVMwill accelerate the execution of generated tests.
At the same time, we expect high divergence, as there are no guarantees that any two sequences of
method calls will be similar. Our scheduling plays an important role to detect high divergence and
schedule a single tinyBee in one warp.

7 EVALUATION

This section describes our evaluation of GVM. We show our research questions, describe hardware
and software configurations, introduce subjects under study, describe runtime environments, show
the results of our experiments, answer the questions, and discuss some design decisions.

7.1 Research Questions

To evaluate the current state of GVM and our parallel algorithms for systematic sequence-based
test generation, we answer the following research questions:

RQ1: How does GVM compare to sequential execution on the existing bytecode interpreters and
JVM with JIT for performing sequence-based test generation?

RQ2: What is the performance improvement obtained on GVM by manually transforming (łjit-
tingž) Java bytecode to native CUDA code?

RQ3: What are the speedups obtained by parallelizing sequence-based test generation with
multiple CPU threads and GPUs?

RQ4: What is the impact of the number of tinyBees on GVM’s performance?

RQ5: How good is the performance of GVM when executing randomly generated tests?

RQ6: How do the thread divergence and memory efficiency impact GVM in various scenarios?

7.2 Hardware and Software Configuration

We ran all the experiments on a system with two Intel(R) Xeon(R) 12-core CPUs E5-2650 v4 @
2.20GHz with 128GB of RAM, running Ubuntu Linux 18.04 LTS. We used Oracle Java 1.8.0_181. For
the experiments run on GPUs, we used (up to four) Tesla P100-SXM2 and CUDA version 10.0.

7.3 Subjects

We evaluated test generation algorithms using six data structures used in prior studies on test input
generation [Kuraj et al. 2015; Pacheco et al. 2007; Visser et al. 2006]. The first column in Table 1
shows the list of data structures. We obtained the implementation of these data structures from

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 177. Publication date: October 2019.

177:14 Ahmet Celik, Pengyu Nie, Christopher J. Rossbach, and Milos Gligoric

publicly available repositories. Following prior work, we use two operations (P = 2) and we set the
number of unique values (N) to be one smaller than the max sequence length (M). Our experiments
did not require changes to the existing code of any subject.

To evaluate the benefits in using GVM to accelerate execution of randomly generated tests, we
chose four projects and randomly selected several classes in each project. Projects include: ds - data
structures used in our systematic test generation study; jcl - JCL classes; vectorz - a library for fast
vector and matrix manipulation; and apache - Apache’s extension of JCL. We generated 1,000 tests
for each chosen class using the default Randoop configuration.

7.4 Runtime Environments

Java Pathfinder (JPF): The original work on systematic sequence-based test generation was done
on top of JPF, which is the main reason that we include JPF in our evaluation. We do not use JPF for
our second use case because we expect that JPF is much slower than Oracle’s Java with JIT, which
we used in the evaluation. JPF itself is implemented in Java and runs on a host JVM. JPF does not
implement any just-in-time compilation, but JPF code gets optimized by the host JVM. We dedicate
16GB of main memory to JPF for all runs.

Oracle Java in the interpreter mode (IJVM): We use the standard Java implementation by Ora-
cle [Oracle 2019a] in the interpreter mode, which can be enabled via -Xint command line option.
We included this runtime environment to provide a comparison between an interpreter running
on CPU vs. GPU. For the first use case, we had to rewrite test drivers to use loops instead of the
VS_toss function. Furthermore, we use Java reflection to compute a state checksum. We dedicate
16GB of the main memory to each run of IJVM.

Oracle Java in the default mode (DJVM): We use the standard Java runtime with the default
configuration. This is a highly engineered system with just-in-time (JIT) compilation. We use the
same test drivers as for IJVM. We note that invoking a sequence of method calls on a few classes
under test is very close to an ideal scenario for JIT. We dedicate 16GB of the main memory to each
run of DJVM. The state checksum is computed the same way as for IJVM.

GVM: For the first use case we run GVM with 24,576 tinyBees. For the second use case, we run as
many tinyBees as there are tests. For both use cases, we split the available memory evenly among
the tinyBees, with heap and stack frames consuming 48KB and 1KB per tinyBee, respectively.
In later sections, we explore the impact of several configurations (e.g., different number of GPU
threads) on the performance of the system. In all experiments, we used the same test drivers as
those used by JPF. We compute a state checksum via reflection, which is the same approach used
for IJVM and DJVM.

7.5 GVM vs. Sequential Execution on a CPU for Sequence-Based Test Generation

RQ1: How does GVM compare to sequential execution on the existing bytecode interpreters and JVM
with JIT for performing sequence-based test generation?
In this section we contrast GVM with the existing sequential sequence-based test generation

algorithm executing on CPU on existing runtime systems. (Section 7.7 evaluates our parallel
algorithms using many CPU threads.) We obtained the results for both shape matching and complete
matching modes. Reported values are averages over two runs.
Tables 1 and 2 show the results for shape matching and complete matching, respectively. The

first and second columns show the name of a data structure and the max sequence length, respec-
tively. We increase the max sequence length as long as GVM, in the default configuration, has
enough memory. The third column shows the total number of executed sequences; this number of
executed sequences is the same for all runtime environments. Columns 4-7 show execution time

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 177. Publication date: October 2019.

Design, Implementation, and Application of GPU-Based Java Bytecode Interpreters 177:15

Table 1. Results for the Shape Matching Mode. SeqLen - Max Sequence Length; #Sequences - Total Number

of Executed Sequences; JPF, DJVM, IJVM, GVM - Time (in Milliseconds) to Execute All Sequences With

Corresponding Runtime Environment.

Structure SeqLen #Sequences
Execution Time [ms] JPF

GVM
DJVM
GVM

IJVM
GVMJPF DJVM IJVM GVM

IntAVLTreeMap 30 18303 76067 16885 792354 11023 6.89 1.52 71.88

IntAVLTreeMap 31 23362 111996 22457 1085890 14323 7.81 1.56 75.81

IntAVLTreeMap 32 30011 139644 29888 1476901 17236 8.09 1.73 85.69

IntRedBlackTree 27 31572 103267 19572 902297 9955 10.37 1.96 90.63

IntRedBlackTree 28 46814 147096 30388 1469487 15508 9.48 1.96 94.75

IntRedBlackTree 29 69477 244311 48766 2345175 23804 10.25 2.04 98.52

BinomialHeap 63 64 2135 1019 8351 1817 1.17 0.55 4.59

BinomialHeap 64 65 2260 1065 8594 1879 1.20 0.56 4.57

BinomialHeap 65 66 2178 1061 9330 1981 1.10 0.53 4.71

BinTree 73 74 2172 1002 9199 3586 0.60 0.28 2.56

BinTree 74 75 2209 1040 9201 3709 0.59 0.28 2.48

BinTree 75 76 2395 1051 9816 3836 0.62 0.27 2.55

FibHeap 38 669 6201 2095 44630 1535 4.03 1.35 29.06

FibHeap 39 706 7335 2238 49312 1604 4.57 1.39 30.73

FibHeap 40 744 7641 2423 54460 1662 4.59 1.46 32.76

TreeMap 28 38867 91294 21356 956582 7421 12.29 2.87 128.90

TreeMap 29 55043 125521 31826 1447260 11046 11.36 2.88 131.01

TreeMap 30 77232 219167 48002 2205486 16099 13.61 2.98 136.99

in milliseconds for JPF, DJVM, IJVM, and GVM. Time for GVM is computed as the total time for
transferring, scheduling, and interpreting.

7.5.1 Shape Matching Mode. Table 1 shows results for the shape matching mode. It is important to
note is that for three data structures (BinomialHeap, BinTree, and FibHeap) the number of executed
sequences is very small. This happens due to aggressive abstraction (Section 5.2). For example,
for BinomialHeap and BinTree the number of method sequences is always one larger than the
max sequence length. Namely, each generated instance of the tree is a list of nodes. In these cases,
measuring time or using an algorithm for parallel generation is unnecessary because using a single
thread for each sequence length is sufficient. Therefore, in the next paragraph, we only discuss the
results for other data structures.
GVM outperforms JPF with the speedup between 6.89× (for IntAVLTreeMap) and 13.61× (for

TreeMap). We consider this speedup substantial [Lee et al. 2010]. We observed that some overhead
for GVM comes from extra steps for extending and sorting sequences and for state checksum
computation. Due to the limited number of instances to explore, GVM provides moderate speedup
over DJVM and commonly performs better for longer sequences. IJVM is much worse in this case
because the state matching computation, as for DJVM and GVM, uses reflection to traverse objects
on the heap and that traversal does not get optimized at runtime. We observed speedup even for

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 177. Publication date: October 2019.

177:16 Ahmet Celik, Pengyu Nie, Christopher J. Rossbach, and Milos Gligoric

Table 2. Results for the Complete Matching Mode. SeqLen - Max Sequence Length; #Sequences - Total

Number of Executed Sequences; JPF, DJVM, IJVM, GVM - Time (in Milliseconds) to Execute All Sequences

With Corresponding Runtime Environment.

Structure SeqLen #Sequences
Execution Time [ms] JPF

GVM
DJVM
GVM

IJVM
GVMJPF DJVM IJVM GVM

IntAVLTreeMap 11 18134 32211 4578 161777 1193 26.98 3.83 135.55

IntAVLTreeMap 12 45286 81467 11149 470214 2992 27.22 3.72 157.15

IntAVLTreeMap 13 105706 198529 29403 1276740 7484 26.52 3.92 170.59

IntRedBlackTree 10 12179 20051 2898 88964 1049 19.11 2.76 84.81

IntRedBlackTree 11 31596 48373 7182 265870 2728 17.73 2.62 97.45

IntRedBlackTree 12 81210 127099 18435 784316 7022 18.09 2.62 111.69

BinomialHeap 9 43048 26956 4305 138795 1172 22.98 3.67 118.37

BinomialHeap 10 90634 72891 10714 394342 2863 25.45 3.74 137.73

BinomialHeap 11 180927 162120 23360 947297 6280 25.80 3.71 150.82

BinTree 7 6265 3531 687 6830 203 17.39 3.38 33.64

BinTree 8 26416 10472 1696 35703 572 18.28 2.96 62.36

BinTree 9 90405 37731 4939 160491 1944 19.39 2.54 82.53

FibHeap 7 9420 4821 926 12363 233 20.65 3.96 52.95

FibHeap 8 37289 16097 2432 65883 549 29.29 4.42 119.89

FibHeap 9 129491 55672 8662 303967 2062 26.98 4.20 147.38

TreeMap 12 57057 60285 10586 427012 3424 17.60 3.08 124.69

TreeMap 13 121847 138101 26750 1089620 8057 17.13 3.31 135.22

TreeMap 14 241897 294816 59014 2530720 17829 16.53 3.30 141.94

cases that do not benefit from parallel execution; overall, GVM outperforms IJVM with the speedup
between 71.88× and 136.99×.

7.5.2 Complete Matching Mode. Table 2 shows the results for the complete matching mode. As
for the prior mode, we keep the same format for the table, so we do not discuss the details of
each column. We can observe that the speedup of GVM over JPF is between 16.53× (for TreeMap
sequence length 14) and 29.29× (for FibHeap sequence length 8). The speedup is larger than for the
shape matching mode, because there are more sequences being executed. Similarly, GVM provides
larger speedup over DJVM due to the larger number of sequences. As in the previous mode, IJVM
pays a high cost to compute the state checksum.

This section considered only sequential execution on a CPU for two reasons. First, we wanted to
establish an initial position of GVM with respect to the sequential execution. Second, prior work
has developed only sequential algorithm for sequence-based test generation. In Section 7.7 we
study parallel algorithm with multiple CPU threads and GPUs.

7.6 Manual AOT Transformation

RQ2: What is the performance improvement obtained on GVM by manually transforming (łjittingž)
Java bytecode to native CUDA code?

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 177. Publication date: October 2019.

Design, Implementation, and Application of GPU-Based Java Bytecode Interpreters 177:17

Table 3. Results for the Shape Matching Mode When Examples are Compiled Ahead of Time to CUDA.

Structure SeqLen #Sequences
Execution Time [ms] JPF

GVM
DJVM
GVM

IJVM
GVMJPF DJVM IJVM GVM

IntAVLTreeMapAOT 30 18303 58335 15448 725162 2537 22.98 6.08 285.83

IntAVLTreeMapAOT 31 23362 89848 20848 976239 3212 27.96 6.48 303.93

IntAVLTreeMapAOT 32 30011 110569 29349 1341285 4009 27.57 7.31 334.52

IntRedBlackTreeAOT 27 31572 71671 19145 830741 2884 24.84 6.63 288.05

IntRedBlackTreeAOT 28 46814 113772 29758 1355624 4392 25.89 6.77 308.65

IntRedBlackTreeAOT 29 69477 178268 46459 2125643 6544 27.23 7.09 324.79

TreeMapAOT 28 38867 74637 21448 947177 3723 20.13 5.79 255.53

TreeMapAOT 29 55043 118089 33833 1469329 5406 21.94 6.29 273.00

TreeMapAOT 30 77232 216112 46303 2188203 7793 27.86 5.98 282.15

Table 4. Results for the Complete Matching Mode When Examples are Compiled Ahead of Time to CUDA.

Structure SeqLen #Sequences
Execution Time [ms] JPF

GVM
DJVM
GVM

IJVM
GVMJPF DJVM IJVM GVM

IntAVLTreeMapAOT 11 18134 26610 4430 164321 845 31.48 5.24 194.46

IntAVLTreeMapAOT 12 45286 60057 11119 472365 2048 29.32 5.42 230.64

IntAVLTreeMapAOT 13 105706 160853 27844 1258355 5021 32.03 5.54 250.61

IntRedBlackTreeAOT 10 12179 13219 2909 86460 555 23.79 5.23 155.64

IntRedBlackTreeAOT 11 31596 35322 6796 262250 1366 25.84 4.96 191.91

IntRedBlackTreeAOT 12 81210 99031 18645 753733 3382 29.27 5.51 222.86

TreeMapAOT 12 57057 51471 10584 440033 2260 22.77 4.68 194.67

TreeMapAOT 13 121847 116448 26682 1071991 5362 21.76 4.98 200.38

TreeMapAOT 14 241897 261153 60253 2542028 10970 23.80 5.48 231.72

We studied the impact of ahead-of-time (AOT) compilation on our results. We performed all
transformations manually at this point. Our approach was to convert each method in Java to
equivalent code in CUDA, which still manipulates memory of the bytecode interpreters. We also
simplify types by changing boxed types (Integer) with primitive types (int) in Java code. The basic
motivation was to reduce the number of interpreted instructions, although memory manipulations
remain similar. We also expected that this change of the Integer type to intmight have negligible
impact on DJVM runs.
We performed our changes on IntAVLTreeMap, IntRedBlackTree, and TreeMap and obtained

IntAVLTreeMapAOT, IntRedBlackTreeAOT, and TreeMapAOT; we skipped transforming other
data structures as the number of sequences was small for the shape matching mode and parallel
runs are less meaningful (Section 7.5.1). Tables 3 and 4 show the results for IntAVLTreeMapAOT,
IntRedBlackTreeAOT, and TreeMapAOT. The impact of AOT is clearly substantial on all interpreters.
As expected, time for DJVM did not change much because DJVM optimizes code with JIT and
performs more aggressive optimizations than those we did manually. We can see that the benefit of
GVM is larger for the optimized code, which provides motivation to study AOT and JIT for GVM

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 177. Publication date: October 2019.

177:18 Ahmet Celik, Pengyu Nie, Christopher J. Rossbach, and Milos Gligoric

0

5

10

15

20

25

30

E
x
e
c
u
ti

o
n
 T

im
e
 [

s
]

IntAVLTreeMap

0

10

20

30

40

50
IntRedBlackTree

0.0

0.5

1.0

1.5

2.0

BinomialHeap

0

1

2

3

4

E
x
e
c
u
ti

o
n
 T

im
e
 [

s
]

BinTree

0.0

0.5

1.0

1.5

2.0

2.5
FibHeap

0

10

20

30

40

50
TreeMap

1 2 4 8

1
6

2
4

3
2

6
4

1
2
8 1 2 3 4

#CPU threads / #GPUs

0

5

10

15

20

25

30

E
x
e
c
u
ti

o
n
 T

im
e
 [

s
]

IntAVLTreeMapAOT

1 2 4 8

1
6

2
4

3
2

6
4

1
2
8 1 2 3 4

#CPU threads / #GPUs

0

10

20

30

40

IntRedBlackTreeAOT

1 2 4 8

1
6

2
4

3
2

6
4

1
2
8 1 2 3 4

#CPU threads / #GPUs

0

10

20

30

40

TreeMapAOT

CPU GPU

Fig. 8. Comparison of parallel generation in shape matching mode using multiple CPU threads and GPUs.

in more detail in the future. For example, if we compare results in Tables 2 and 4, we observe that
ratios DJVM/GVM for TreeMap and TreeMapAOT are 2.98× and 5.98×, respectively.

7.7 Parallel Generation using Multiple CPU Threads and GPUs

RQ3: What are the speedups obtained by parallelizing sequence-based test generation with multiple
CPU threads and GPUs?

Considering that there is only a sequential implementation of JPF, and GVM outperformed IJVM
by a large margin, we only study performance of our parallel algorithm on DJVM. Additionally, we
consider performance of the parallel algorithm if we utilize multiple GPUs. In sections 5.4 and 5.5,
we have already discussed the way we adjust our parallel algorithm to multiple CPU threads and
multiple GPUs. Barcharts in Figure 8 and 9 show the results of various number of CPU threads and
various numbers of GPUs, with the largest max sequence length for each subject. To help with the
side-by-side comparison we also draw two horizontal lines that correspond to runs on 1-GPU and
4-GPUs. For the sake of completeness, we show the results for all subjects, although the results for
BinomialHeap, BinTree, and FibHeap in the shape matching mode should be ignored due to the
nature of these subjects.
We can observe that the results using a single GPU frequently match the results obtain when

running between 2 and 16 CPU threads. Runs for łjittedž structures are similar to the best results

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 177. Publication date: October 2019.

Design, Implementation, and Application of GPU-Based Java Bytecode Interpreters 177:19

0

5

10

15

20

25

30

E
x
e
c
u
ti

o
n
 T

im
e
 [

s
]

IntAVLTreeMap

0

5

10

15

IntRedBlackTree

0

5

10

15

20

BinomialHeap

0

1

2

3

4

5

E
x
e
c
u
ti

o
n
 T

im
e
 [

s
]

BinTree

0

2

4

6

8

FibHeap

0

10

20

30

40

50

60

TreeMap

1 2 4 8

1
6

2
4

3
2

6
4

1
2
8 1 2 3 4

#CPU threads / #GPUs

0

5

10

15

20

25

E
x
e
c
u
ti

o
n
 T

im
e
 [

s
]

IntAVLTreeMapAOT

1 2 4 8

1
6

2
4

3
2

6
4

1
2
8 1 2 3 4

#CPU threads / #GPUs

0

5

10

15

IntRedBlackTreeAOT

1 2 4 8

1
6

2
4

3
2

6
4

1
2
8 1 2 3 4

#CPU threads / #GPUs

0

10

20

30

40

50

60

TreeMapAOT

CPU GPU

Fig. 9. Comparison of parallel generation in complete matching mode using multiple CPU threads and GPUs.

obtained on CPUs. Additionally, we can observe that runs with more than 24 or 32 CPU threads
provide no extra performance benefits. Doubling the number of GPUs brings significant performance
boost. Finally, GVM runs with four GPUs provide the best overall performance.
In conclusion, we find that our parallel algorithm for sequence-based test generation enables

performance improvements on parallel hardware. Moreover, our results demonstrate that for a
specific Java application, GVM can be as efficient as (or even outperform) DJVM. This means that
GVM can be used to increase throughput on a system by running applications on both CPUs and
GPUs, and further research can be done to combine DJVM and GVM.

7.8 Case Study: Number of tinyBees

RQ4: What is the impact of the number of tinyBees on GVM’s performance?
We evaluated the impact of the number of tinyBees running in parallel on the performance

of sequence-based test generation. In this case study, we used TreeMap and TreeMapAOT data
structures and complete matching. We chose TreeMap because this structure is a widely used code
from JCL. We chose complete matching because it is algorithmically challenging and does not
suffer from shortcomings of shape matching.
Figure 10 show the impact of the number of tinyBees (x-axis) on total execution time (y-axis).

We show the results for different max sequence lengths, which results in three different lines on

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 177. Publication date: October 2019.

177:20 Ahmet Celik, Pengyu Nie, Christopher J. Rossbach, and Milos Gligoric

10

20

30

1
8
4
3
2

2
1
5
0
4

1
0
2
4
0

1
1
2
6
4

2
0
4
8
0

1
1
2
6
4

1
5
3
6
0

1
3
3
1
2

2
4
5
7
6

1
8
4
3
2

1
1
2
6
4

2
2
5
2
8

1
5
3
6
0

1
2
2
8
8

1
9
4
5
6

2
0
4
8
0

1
6
3
8
4

1
4
3
3
6

1
3
3
1
2

2
4
5
7
6

1
4
3
3
6

1
6
3
8
4

1
7
4
0
8

1
5
3
6
0

1
2
2
8
8

1
9
4
5
6

2
3
5
5
2

1
0
2
4
0

1
6
3
8
4

1
9
4
5
6

2
0
4
8
0

1
7
4
0
8

1
3
3
1
2

2
2
5
2
8

1
8
4
3
2

1
7
4
0
8

2
2
5
2
8

2
3
5
5
2

2
4
5
7
6

2
3
5
5
2

2
1
5
0
4

1
4
3
3
6

1
2
2
8
8

1
0
2
4
0

2
1
5
0
4

#tinyBees

E
xe

c
u
ti
o
n
 T

im
e
 [

s
]

SeqLen: 12 13 14

(a) TreeMap

4

8

12

16

1
8
4
3
2

2
4
5
7
6

1
9
4
5
6

1
6
3
8
4

1
6
3
8
4

2
2
5
2
8

2
0
4
8
0

1
3
3
1
2

1
8
4
3
2

1
2
2
8
8

1
5
3
6
0

1
1
2
6
4

2
1
5
0
4

1
4
3
3
6

2
1
5
0
4

2
1
5
0
4

1
3
3
1
2

1
2
2
8
8

2
4
5
7
6

1
3
3
1
2

2
0
4
8
0

1
1
2
6
4

1
7
4
0
8

2
3
5
5
2

1
5
3
6
0

1
0
2
4
0

1
9
4
5
6

1
5
3
6
0

1
6
3
8
4

1
8
4
3
2

2
2
5
2
8

2
3
5
5
2

2
0
4
8
0

2
4
5
7
6

1
7
4
0
8

1
0
2
4
0

1
0
2
4
0

1
2
2
8
8

1
4
3
3
6

1
4
3
3
6

2
2
5
2
8

1
1
2
6
4

1
9
4
5
6

2
3
5
5
2

1
7
4
0
8

#tinyBees

E
xe

c
u
ti
o
n
 T

im
e
 [

s
]

SeqLen: 12 13 14

(b) TreeMapAOT

Fig. 10. Scaling GVM with various numbers (in increments of 1024) of tinyBees for TreeMap and complete

matching. We show the results for three different max sequence lengths.

Table 5. Execution Time for Randomly Generated Tests.

Project #Tests
Execution Time [ms]

DJVM IJVM GVM GVM-Warp

ds 6000 281 276 242 121

jcl 6000 427 451 719 236

vectorz 8000 638 742 627 337

apache 8000 627 798 888 587

the plot. We can see that the increase in the number of tinyBees has a positive impact on the
performance. Clearly, we can observe that the increase in the number of tinyBees after some point
does not contribute to the reduction in the execution time due to the cost of synchronization and
number of kernel invocations.

7.9 Execution of Randomly Generated Tests

RQ5: How good is GVM performance when executing randomly generated tests?
Table 5 shows the results for running randomly generated tests. The list of classes used in each

project are in the Appendix A. Each row shows results for one project: name of the project, number
of tests, execution time with DJVM (DJVM), execution time with IJVM (IJVM), execution time with
GVM when running one test in each GPU thread (GVM), and execution time with GVM when
running one test in one warp (GVM-Warp). We show the last two columns to illustrate the impact
of control flow divergence on the results and the benefit of the scheduling policy. In this set of
experiments, we also expected that DJVM gains less from JIT, because each test is a different method
executed only once. We note that the results in the Table include the startup cost, but we confirmed
that this cost does not dominate the total execution time. Future work should study longer running
tests and include more (and larger) projects, which will help to generalize our findings.

7.10 Thread Divergence and Memory Efficiency

RQ6: How do the thread divergence and memory efficiency impact GVM in various scenarios?
To understand how well GVM utilizes the parallel resources on the GPU, we characterize

the control flow divergence, occupancy, and memory bandwidth utilization. Table 6 shows non-
predicated warp execution efficiency (WNPEE), achieved occupancy (AO), and global load and

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 177. Publication date: October 2019.

Design, Implementation, and Application of GPU-Based Java Bytecode Interpreters 177:21

Table 6. GPU Efficiency Metrics for GVM’s Engine Kernel, Averaged Across all Workloads for Shape Matching,

Complete Matching, and Random Test Execution. The WNPEE Column is Non-predicated Warp Efficiency,

AO is Achieved Occupancy, GLT and GST are Global Load and Store Throughput Respectively.

Workload WNPEE AO GLT GST

shape matching 70.5% 0.310 41 GB/s 42 GB/s

complete matching 59.8% 0.467 40 GB/s 145 GB/s

random test execution 9.0% 0.375 8760 MB/s 449 MB/s

store throughput (GLT, GST) as measured with nvprof. Data are averaged over all subjects for
each experiment.

We take WNPEE as a proxy for control flow divergence: the closer WNPEE is to value 1, the less
impact divergence has on performance. The data show that complete matching is 59.8% and shape
matching is 70.5%. Average achieved occupancy for engine is 0.467 and 0.310 for complete and
shape respectively, showing the SMs are approximately 1/3 utilized. Utilization is ultimately limited
by memory capacityśbecause each tinyBee requires significant global memory, this translates to
creating fewer tinyBees than the execution resources of the hardware can support.
Both test generation techniques do essentially the same amount of work per thread in the

engine kernel (each executing 10e6 instructions per warp). Shape matching and complete match-
ing techniques use parallel sorting implemented by NVIDIA’s thrust::sort, but do orders of
magnitude less work in these kernels. So, while the other kernels have higher efficiency, utilization
and memory throughput for shape and complete matching, the engine remains the dominant term
for performance.

The WNPEE data for randoop are measured when GVM is running multiple tinyBees per warp,
and the WNPEE of 9.0% shows that thread divergence is extreme, well below the 25% threshold
for GVM to elect to run the workload with only a single hardware thread per warp. With a single
thread per warp, WNPEE is still low because using only a single vector lane has low warp execution
efficiency. However thread divergence disappears entirely, yielding higher overall performance.

7.11 Discussion of Dedicated Memory for CPU Runs

Finally, we briefly discuss the key reason to use 16GB of RAM for all IJVM and DJVM runs although
our machine has 128GB of RAM. Our experiments on CPUs with 128GB (or any other value over
32GB) led to worse performance compared to runs with 16GB. This happens because Java uses 8
bytes instead of 4 for reference values, which hurts the performance [Vorontsov 2019]. Additionally,
we decided to dedicate the same amount of memory to CPU runs and a single GPU; runs with more
than 16GB and less than 32GB do not improve performance of IJVM or DJVM for our tasks.

8 LIMITATIONS AND FUTURE WORK

Java is huge: hundreds of pages for the language specification and runtime environment. GVM
supports features necessary for many applications that compile to Java bytecode, but it omits many
features that were not needed for the application targeted in this paper. We first report limitations
that we encountered by running a benchmark for the Java language on top of GVM, then we
document other limitations, and propose several directions for future work.

8.1 Limitations

To evaluate the state of GVM, we execute the test suites available in the K-Java [Bogdanas and
Roşu 2015] on top of GVM 1. K-Java targets the Java language rather than the JCL; the latter is

1We use K-Java available at github.com/kframework/java-semantics (SHA: c202266) with 834 programs in the test suite.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 177. Publication date: October 2019.

https://github.com/kframework/java-semantics

177:22 Ahmet Celik, Pengyu Nie, Christopher J. Rossbach, and Milos Gligoric

Table 7. Number of Programs in the K-Java Test Suites that GVM Passed and Failed.

Category #Pass #Fail Category #Pass #Fail

smoke_tests 4 2 method_overloading 22 0

literals 9 1 method_access_mode 7 5

syntax_samples 5 0 fields 19 0

prim_operators 21 0 class_init 18 0

prim_conversions 14 0 constructors 19 0

string_plus 8 0 abstract 3 0

ref_operators 20 0 interfaces 24 0

op_cond_type 5 0 super_method 11 0

exp_type 29 0 static_methods 21 0

stmt_other 2 0 static_fields 11 0

stmt_loop 6 0 static_init 14 4

stmt_switch 8 0 interface_fields 25 8

stmt_return 20 0 static_init_trigger 24 7

stmt_throw 16 0 main_method 6 0

stmt_throw_thread_term 3 0 field_access_mode 4 1

stmt_break 21 0 comp_time_constants 5 0

stmt_continue 23 0 packages 34 0

arrays 40 8 class_literals 5 0

arrays_separated 35 7 inner_cl_static 48 1

basic_jvm_exc 2 2 inner_cl_instance 32 0

floats 7 13 local_cl 65 0

diverse 6 5 anonymous_cl 19 0

java_api_core 5 0 threads_run 0 7

method_basic 18 0 Σ 763 71

done in the Java Compatibility Kit (JCK). We used all programs available in the K-Java, and Table 7
shows the number of passing and failing programs organized by categories. GVM passes 763 tests
and fails 71. However, all failed cases derive from scenarios GVM explicitly does not support:

a) 7 failures occur because we do not implement monitorenter/monitorexit.

b) 8 cases fail because they require reading command line inputs during execution, which GVM

does not support.

c) 11 cases rely on very high-dimensional arrays (and GVM currently supports up to three dimen-
sions) or handling rarely occurring array-related exceptions, e.g., ArrayStoreException.

d) 12 cases fail due to minor differences in floating point calculation between GPU and CPU.

e) 2 cases fail because GVM does not support initialization of interface fields via method calls.

f) 7 cases fail due to differences in string formatting.

g) 17 cases fail due to dynamic dispatch and static block initializers, e.g., GVM does not correctly
discover an inherited package-private method if such a method is invoked from another package.

Of the 71 failing cases, 20 of themśb) and d)śare due to fundamental limitations of supporting a
JVM on GPUs, while 51 simply require additional engineering effort. Other limitations, which we
mentioned earlier in the paper, are due to our design decisions and focus on a specific application:

• GVM does not support multi-threaded programs, because our targeted application does not use
multi-threading.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 177. Publication date: October 2019.

Design, Implementation, and Application of GPU-Based Java Bytecode Interpreters 177:23

• GVM does not implement any actual GC; this decision was appropriate for testing workloads
used in our evaluation, but could be a big limitation for other applications.

• GVM implements a subset of all native methods, i.e., those that were needed for used workloads.

• GVM does not support applications that require any access to external resources, such as the file
system or network.

8.2 Future Work

Based on the results presented throughout this paper, we believe that GVM is an excellent base
for several applications other than those used in this paper, including testing of software product
lines [Kim et al. 2013; Nguyen et al. 2014] and implementing a symbolic execution engine [Anand
et al. 2007; King 1976], which we plan to explore in the future.
We are also keen to extend our interpreter to support multi-threaded applications. This could

be useful for several applications, including test generation for multi-threaded programs [Pradel
and Gross 2012] and implementing a parallel software model checker [Godefroid 1997]. We plan to
study two ways to model threads: (1) map each Java thread to a GPU thread (and use one tinyBee
per warp), or (2) enforce sequential execution with a single GPU thread with minimal number of
context switches [Musuvathi and Qadeer 2007].
We focused on sequence-based test generation and test execution in this work, but other test

generation algorithms, e.g., feedback-directed random test generation [Pacheco et al. 2007] could
be parallelized by utilizing GVM; this will require minor modification to the system itself, but
ensuring maximum sharing of control flow will be an interesting challenge.
GVM currently does not implement either runtime code optimizations nor ahead-of-time op-

timizations. Although these are current shortcomings of the system, they are also exciting op-
portunities that can substantially increase performance of GVM. In Section 7.6, we showed that
ahead-of-time compilation can lead to performance improvement.
Our work in this paper was to understand how far we can get with a prototype Java bytecode

interpreter that runs entirely on GPU. Future work should explore offloading only parts of applica-
tion and utilizing both CPUs and GPUs simultaneously. This would be in line with prior work on
offloading user annotated loops to a GPU [JCuda 2018; Pratt-Szeliga et al. 2012; Yan et al. 2009],
but code running on a GPU in our case would also be Java bytecode that enables usage of JCL,
exception handling, etc.

9 RELATED WORK

GVM is the first system that executes Java bytecode interpreters on GPUs and our goal was to move
entire algorithms to GPU (i.e., no code is executed on CPU). Prior work has tried to offload only
parts of (parallel) computation by compiling code to CUDA/OpenCL. Nevertheless, the design of
GVM is inspired by prior research on offloading computation from high-level languages to GPUs.
We also summarize prior work on using GPUs for speeding up testing.

High-level languages on GPUs: Rootbeer [Pratt-Szeliga et al. 2012] enables programming GPUs
in Java. A developer implements the Kernel interface for code to be run on GPUs. The goal of
Rootbeer is to improve programmability of GPUs. Similarly, JaBEE [Zaremba et al. 2012] requires
that a developer implements the GPUKernel interface and focuses on speeding up parts of a Java
application. Java-GPU [GPU 2019] compiles annotated loops (@Parallel) to CUDA and handles
data transfers automatically.
PTask [Rossbach et al. 2011], StreamIt [Thies et al. 2002], Hydra [Weinsberg et al. 2008] and

Pencil [Baghdadi et al. 2015] provide graph-based dataflow programming models for offloading

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 177. Publication date: October 2019.

177:24 Ahmet Celik, Pengyu Nie, Christopher J. Rossbach, and Milos Gligoric

tasks to GPUs. Flextream [Hormati et al. 2009] is compilation framework for synchronous dataflow
models that dynamically adapts applications to an FPGA, GPU, or CPU target architecture.
Many other systems provide GPU support in a high-level language: C++ [Gregory and Miller

2012], Java [Catanzaro et al. 2010; JCuda 2018; Pratt-Szeliga et al. 2012; Yan et al. 2009], MAT-
LAB [Bispo et al. 2015; Prasad et al. 2011], Python [Catanzaro et al. 2010; Klöckner et al. 2012],
C# [Farooqui et al. 2014; Rossbach et al. 2013], and Haskell [Chakravarty et al. 2011]. Some go
beyond simple GPU API bindings, and provide support for compiling the high-level language to
GPU code, none support a prototype Java interpreter on the GPU, and all expose the underlying
device abstraction. Liszt’s [DeVito et al. 2011] static meshes, Halide’s [Ragan-Kelley et al. 2017]
coordinate spaces, Lime’s [Dubach et al. 2012] type system, Legion’s [Bauer et al. 2012] logical
regions, and Tian et al. [2017] LLVM extension provide runtimes and compilers with leverage for
identifying automatically parallelizable code: all enable high level programs to be parallelized and
compiled to different target architectures. Because GVM supports a lightweight Java bytecode
interpreter per GPU thread, such compiler hints are unnecessary.

Sumatra [Oracle 2019d] was a project by the OpenJDK community to take advantages of GPUs
and other accelerators; the original focus was on speeding up parallel code in a Java application via
an extension of the stream API. Unlike Sumatra, which parallelizes only a very specific construct in
an application, the goal of our work is to run an entire application/algorithm on GPU by developing
a Java bytecode interpreter that runs on GPUs; so far, our main motivation was to speed up testing
tasks, but we believe that other interesting tasks can benefit from our work, e.g., implementing a
symbolic execution engine.

Maas et al. [2012] and Akram et al. [2016] offloaded garbage collection (GC) from Jikes RVM [Jikes
RVM 2019] to GPUs and heterogeneous multicore architectures. Unlike their work, GVM supports
running many Java bytecode interpreters on a GPU. While GVM currently does not include GC,
our computation of the checksum of a program state can be extended to implement other/actual
GC algorithms.

GVM runs independent Java bytecode interpreters per vector lane on the GPU: isolation across
tinyBees is a design goal for which we expect help from emerging support for fine-grain memory
protection on GPUs [Ausavarungnirun et al. 2017, 2018; Power et al. 2014; Vesely et al. 2016].

Test generation and execution on GPUs: Celik et al. [2017] presented intKorat, a technique for
bounded-exhaustive test input generation on GPUs. Their approach was to implement an existing
algorithm in CUDA. Unlike intKorat, we developed a system of Java bytecode interpreters and used
the system for sequence-based test generation and execution of randomly generated tests. Yaneva
et al. [2017] utilized GPUs to accelerate testing for embedded software written in C/C++.

GPUexplore [Wijs and Bošnački 2014; Wijs et al. 2016] is a technique for performing state space
exploration and model checking using GPUs.

GVM vs. prior work: GVM makes headway in a problem area where previous attempts have been
less successful for three reasons. First, GVM’s offload target is the entire application, rather than just
parallel phases. This has an important implication: GVM has limited need to identify performance
profitable data parallel phases and balance the gains of parallelism against the overheads of offload.
In particular, datamovement overheads can have lower impact on performance. Inmost data-parallel
offloads, a large volume of data must be transferred to/from the GPU, potentially synchronously,
potentially many times. While program inputs/outputs can still require transfer in GVM, the offload
does not require multiple phases of high-volume duplex communication because GVM offloads the
entire program. Second, while GVM implements a complete bytecode interpreter on the GPU, the
design anticipates use in domains that are, in fact, amenable to GPU execution. This means that
we anticipate workloads with substantial shared control flow across different runs of the same or

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 177. Publication date: October 2019.

Design, Implementation, and Application of GPU-Based Java Bytecode Interpreters 177:25

Table 8. Classes Under Test Used in Experiments with Randomly Generated Tests.

ds : Data structures used in our sequence-based test generation

BinTree

BinomialHeap

FibHeap

IntAVLTreeMap

IntRedBlackTree

TreeMap

jcl : https://docs.oracle.com/javase/8/docs/api/

java.util.ArrayList

java.util.HashMap

java.util.IntSummaryStatistics

java.util.LinkedList

java.util.Spliterators

java.util.StringTokenizer

vectorz : https://github.com/mikera/vectorz

mikera.indexz.GrowableIndex

mikera.indexz.Index

mikera.vectorz.BitVector

mikera.vectorz.Scalar

mikera.vectorz.Vector

mikera.vectorz.Vector1

mikera.vectorz.Vector2

mikera.vectorz.Vector3

apache : https://github.com/apache/commons-collections

org.apache.commons.collections4.list.FixedSizeList

org.apache.commons.collections4.list.TreeList

org.apache.commons.collections4.map.DefaultedMap

org.apache.commons.collections4.map.FixedSizeMap

org.apache.commons.collections4.map.LRUMap

org.apache.commons.collections4.map.LinkedMap

org.apache.commons.collections4.queue.CircularFifoQueue

org.apache.commons.collections4.set.MapBackedSet

similar application invocations, rather than across different threads in the same application. Our
claim is that this is sufficiently general to serve the needs of an important class of applications, but
not that it will generalize to all applications. Third, GPU architectures improved significantly since
most of the previous works in this area. Importantly, GPU core clock speeds have approximately
doubled in the last several years, which means that the performance penalty for control flow
divergence is relatively lower. It is still a dominant term for performance, as our evaluation shows,
however, sequential execution on a GPU is nowmuch faster, which gives GVM headroom to tolerate
levels of divergence that would have made offload unprofitable on previous architectures.

10 CONCLUSION

We described the design and implementation of GVM, a system that enables simultaneous execution
of many Java bytecode interpreters on GPUs. Our work is the first to implement an interpreter for
a popular general-purpose language (Java) in CUDA. GVM is ideal for applications that execute a
large number of independent tasks, which share the same codebase and execute in similar amount of

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 177. Publication date: October 2019.

https://docs.oracle.com/javase/8/docs/api/
https://github.com/mikera/vectorz
https://github.com/apache/commons-collections

177:26 Ahmet Celik, Pengyu Nie, Christopher J. Rossbach, and Milos Gligoric

time. GVM uses novel algorithms, scheduling, and data layout techniques to adapt to the massively
parallel programming and execution model of GPUs. We applied GVM to sequence-based test
generation and execution of randomly generated tests. Our evaluation shows that GVM can be
more effective than existing Java interpreters, and as efficient as running parallel algorithms using
several CPU threads with Oracle JVM with JIT, which has been engineered and optimized for
over 20 years. We believe that GVM provides a platform that can be exploited for many other
domain-specific tasks, used side-by-side with CPUs to increase throughput, and combined with
JVMs running on CPUs to solve problems that could benefit from extra computational power.

A SUBJECTS OF RANDOMLY GENERATED TESTS

This section shows the details of subjects used in Section 7.9. Table 8 shows the list of classes under
test for our experiments with randomly generated tests.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their comments. We thank Kush Jain, Joshua Landgraf,
Darko Marinov, Karl Palmskog, Marinela Parovic, Zhiqiang Zang, and Chenguang Zhu for their
feedback on this work. This work was partially supported by the US National Science Foundation
under Grant Nos. CCF-1652517, CCF-1704790, and CNS-1846169.

REFERENCES

Shoaib Akram, Jennifer B Sartor, Kenzo Van Craeynest, Wim Heirman, and Lieven Eeckhout. 2016. Boosting the Priority

of Garbage: Scheduling Collection on Heterogeneous Multicore Processors. Transactions on Architecture and Code

Optimization 13, 1 (2016), 4.

Amazon. 2018. Amazon EC2 Elastic GPUs. https://aws.amazon.com/ec2/elastic-gpus/.

Saswat Anand, Corina S. Păsăreanu, and Willem Visser. 2007. JPF-SE: A Symbolic Execution Extension to Java Pathfinder.

In International Conference on Tools and Algorithms for the Construction and Analysis of Systems. 134ś138.

Rachata Ausavarungnirun, Joshua Landgraf, Vance Miller, Saugata Ghose, Jayneel Gandhi, Christopher J. Rossbach, and

Onur Mutlu. 2017. Mosaic: A GPU Memory Manager with Application-transparent Support for Multiple Page Sizes. In

International Symposium on Microarchitecture. 136ś150.

Rachata Ausavarungnirun, Vance Miller, Joshua Landgraf, Saugata Ghose, Jayneel Gandhi, Adwait Jog, Christopher J.

Rossbach, and Onur Mutlu. 2018. MASK: Redesigning the GPU Memory Hierarchy to Support Multi-Application

Concurrency. In International Conference on Architectural Support for Programming Languages and Operating Systems.

503ś518.

Azure. 2018. AzureWindows VM sizes - GPU. https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-gpu.

Riyadh Baghdadi, Ulysse Beaugnon, Albert Cohen, Tobias Grosser, Michael Kruse, Chandan Reddy, Sven Verdoolaege,

Adam Betts, Alastair F Donaldson, Jeroen Ketema, Javed Absar, Sven van Haastregt, Alexey Kravets, Anton Lokhmotov,

Robert David, and Elnar Hajiyev. 2015. Pencil: A Platform-Neutral Compute Intermediate Language for Accelerator

Programming. In International Conference on Parallel Architecture and Compilation. 138ś149.

Michael Bauer, Sean Treichler, Elliott Slaughter, and Alex Aiken. 2012. Legion: Expressing Locality and Independence

with Logical Regions. In International Conference on High Performance Computing, Networking, Storage and Analysis.

66:1ś66:11.

João Bispo, Luís Reis, and João M. P. Cardoso. 2015. C and OpenCL Generation from MATLAB. In Symposium on Applied

Computing. 1315ś1320.

David Blythe. 2006. The Direct3D 10 system. ACM Trans. Graph. 25, 3 (2006), 724ś734.

Denis Bogdanas and Grigore Roşu. 2015. K-Java: A Complete Semantics of Java. In Symposium on Principles of Programming

Languages. 445ś456.

K.J. Brown, A.K. Sujeeth, H.J. Lee, T. Rompf, H. Chafi, and K. Olukotun. 2011. A Heterogeneous Parallel Framework for

Domain-Specific Languages. In International Conference on Parallel Architectures and Compilation Techniques. 89ś100.

Bryan Catanzaro, Michael Garland, and Kurt Keutzer. 2010. Copperhead: Compiling an Embedded Data Parallel Language.

Technical Report UCB/EECS-2010-124. EECS Department, University of California, Berkeley. http://www.eecs.berkeley.

edu/Pubs/TechRpts/2010/EECS-2010-124.html

Ahmet Celik, Sreepathi Pai, Sarfraz Khurshid, and Milos Gligoric. 2017. Bounded Exhaustive Test-Input Generation on

GPUs. In Conference on Object-Oriented Programming, Systems, Languages, and Applications. 94:1ś94:25.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 177. Publication date: October 2019.

https://aws.amazon.com/ec2/elastic-gpus/
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-gpu
http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-124.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-124.html

Design, Implementation, and Application of GPU-Based Java Bytecode Interpreters 177:27

Manuel MT Chakravarty, Gabriele Keller, Sean Lee, Trevor L McDonell, and Vinod Grover. 2011. Accelerating Haskell Array

Codes with Multicore GPUs. InWorkshop on Declarative Aspects of Multicore Programming. 3ś14.

Zachary DeVito, Niels Joubert, Francisco Palacios, Stephen Oakley, Montserrat Medina, Mike Barrientos, Erich Elsen, Frank

Ham, Alex Aiken, Karthik Duraisamy, Eric Darve, Juan Alonso, and Pat Hanrahan. 2011. Liszt: A Domain Specific

Language for Building Portable Mesh-based PDE Solvers. In International Conference for High Performance Computing,

Networking, Storage and Analysis. 9:1ś9:12.

Christophe Dubach, Perry Cheng, Rodric Rabbah, David F. Bacon, and Stephen J. Fink. 2012. Compiling a High-level

Language for GPUs: (via Language Support for Architectures and Compilers). In Conference on Programming Language

Design and Implementation. 1ś12.

Chucky Ellison and Grigore Roşu. 2012. An Executable Formal Semantics of C with Applications. In Symposium on Principles

of Programming Languages. 533ś544.

Naila Farooqui, Christopher J. Rossbach, Yuan Yu, and Karsten Schwan. 2014. Leo: A Profile-Driven Dynamic Optimization

Framework for GPU Applications. In International Conference on Timely Results in Operating Systems. 5ś5.

Patrice Godefroid. 1997. Model Checking for Programming Languages Using VeriSoft. In Symposium on Principles of

Programming Languages. 174ś186.

Google. 2018. Graphics Processing Unit (GPU): Leverage GPUs on Google Cloud for Machine Learning and Scientific

Computing. https://cloud.google.com/gpu/.

Java GPU. 2019. Java GPU Code Archive. https://code.google.com/archive/p/java-gpu.

Kate Gregory and Ade Miller. 2012. C++ AMP: Accelerated Massive Parallelism with Microsoft Visual C++. Microsoft Press.

Akihiro Hayashi, Max Grossman, Jisheng Zhao, Jun Shirako, and Vivek Sarkar. 2013. Accelerating Habanero-Java Programs

with OpenCL Generation. In International Conference on Principles and Practices of Programming on the Java Platform:

Virtual Machines, Languages, and Tools. 124ś134.

Amir Hormati, Yoonseo Choi, Manjunath Kudlur, Rodric M. Rabbah, Trevor N. Mudge, and Scott A. Mahlke. 2009. Flextream:

Adaptive Compilation of Streaming Applications for Heterogeneous Architectures. In International Conference on Parallel

Architectures and Compilation Techniques. 214ś223.

Java Pathfinder. 2019. Java Pathfinder Home Page. https://github.com/javapathfinder/jpf-core.

JCuda. 2018. Java Bindings for CUDA. https://www.jcuda.org/jcuda/JCuda.html.

Jikes RVM. 2019. Jikes RVM Home Page. https://www.jikesrvm.org.

Andrew Kerr, Gregory F. Diamos, and Sudhakar Yalamanchili. 2009. A Characterization and Analysis of PTX Kernels. In

International Symposium on Workload Characterization. 3ś12.

Khronos. 2019. OpenCL Overview. https://www.khronos.org/opencl.

Chang Hwan Peter Kim, Darko Marinov, Sarfraz Khurshid, Don Batory, Sabrina Souto, Paulo Barros, and Marcelo d’Amorim.

2013. SPLat: Lightweight Dynamic Analysis for Reducing Combinatorics in Testing Configurable Systems. 257ś267.

James C. King. 1976. Symbolic Execution and Program Testing. Commun. ACM 19, 7 (1976), 385ś394.

Andreas Klöckner, Nicolas Pinto, Yunsup Lee, Bryan Catanzaro, Paul Ivanov, and Ahmed Fasih. 2012. PyCUDA and

PyOpenCL: A Scripting-based Approach to GPU Run-time Code Generation. Parallel Comput. 38, 3 (2012), 157ś174.

Ivan Kuraj, Viktor Kuncak, and Daniel Jackson. 2015. Programming with Enumerable Sets of Structures. In Conference on

Object-Oriented Programming, Systems, Languages, and Applications. 37ś56.

Victor W. Lee, Changkyu Kim, Jatin Chhugani, Michael Deisher, Daehyun Kim, Anthony D. Nguyen, Nadathur Satish,

Mikhail Smelyanskiy, Srinivas Chennupaty, Per Hammarlund, Ronak Singhal, and Pradeep Dubey. 2010. Debunking the

100X GPU vs. CPU Myth: An Evaluation of Throughput Computing on CPU and GPU. In International Symposium on

Computer Architecuture. 451ś460.

Martin Maas, Philip Reames, Jeffrey Morlan, Krste Asanović, Anthony D. Joseph, and John Kubiatowicz. 2012. GPUs as an

Opportunity for Offloading Garbage Collection. In International Symposium on Memory Management. 25ś36.

Madanlal Musuvathi and Shaz Qadeer. 2007. Iterative Context Bounding for Systematic Testing of Multithreaded Programs.

In Conference on Programming Language Design and Implementation. 446ś455.

Hung Viet Nguyen, Christian Kästner, and Tien N. Nguyen. 2014. Exploring Variability-aware Execution for Testing

Plugin-based Web Applications. In International Conference on Software Engineering. 907ś918.

NVIDIA. 2019. CUDA Zone. https://developer.nvidia.com/cuda-zone.

Oracle. 2019a. Java SE at a Glance. https://www.oracle.com/technetwork/java/javase/overview/index.html.

Oracle. 2019b. JEP 318: Epsilon: A No-Op Garbage Collector. https://openjdk.java.net/jeps/318.

Oracle. 2019c. JNI APIs and Developer Guides. https://docs.oracle.com/javase/8/docs/technotes/guides/jni.

Oracle. 2019d. OpenJDK Project Sumatra. http://openjdk.java.net/projects/sumatra.

Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas Ball. 2007. Feedback-Directed Random Test Generation.

In International Conference on Software Engineering. 75ś84.

Shoumik Palkar, James J. Thomas, Deepak Narayanan, Pratiksha Thaker, Rahul Palamuttam, Parimarjan Negi, Anil Shanbhag,

Malte Schwarzkopf, Holger Pirk, Saman P. Amarasinghe, Samuel Madden, andMatei Zaharia. 2018. Evaluating End-to-End

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 177. Publication date: October 2019.

https://cloud.google.com/gpu/
https://code.google.com/archive/p/java-gpu
https://github.com/javapathfinder/jpf-core
https://www.jcuda.org/jcuda/JCuda.html
https://www.jikesrvm.org
https://www.khronos.org/opencl
https://developer.nvidia.com/cuda-zone
https://www.oracle.com/technetwork/java/javase/overview/index.html
https://openjdk.java.net/jeps/318
https://docs.oracle.com/javase/8/docs/technotes/guides/jni
http://openjdk.java.net/projects/sumatra

177:28 Ahmet Celik, Pengyu Nie, Christopher J. Rossbach, and Milos Gligoric

Optimization for Data Analytics Applications in Weld. Proceedings of the VLDB Endowment 11, 9 (2018), 1002ś1015.

Jonathan Power, Mark D Hill, and David A Wood. 2014. Supporting x86-64 Address Translation for 100s of GPU Lanes. In

International Symposium on High Performance Computer Architecture. 568ś578.

Michael Pradel and Thomas R. Gross. 2012. Fully Automatic and Precise Detection of Thread Safety Violations. In Conference

on Programming Language Design and Implementation. 521ś530.

Ashwin Prasad, Jayvant Anantpur, and R. Govindarajan. 2011. Automatic Compilation of MATLAB Programs for Synergistic

Execution on Heterogeneous Processors. In Conference on Programming Language Design and Implementation. 152ś163.

Philip C. Pratt-Szeliga, James W. Fawcett, and Roy D. Welch. 2012. Rootbeer: Seamlessly Using GPUs from Java. In

International Conference on High Performance Computing and Communication. 375ś380.

Jonathan Ragan-Kelley, Andrew Adams, Dillon Sharlet, Connelly Barnes, Sylvain Paris, Marc Levoy, Saman Amarasinghe,

and Frédo Durand. 2017. Halide: Decoupling Algorithms from Schedules for High-performance Image Processing.

Commun. ACM 61, 1 (2017), 106ś115.

Christopher J. Rossbach, Jon Currey, Mark Silberstein, Baishakhi Ray, and Emmett Witchel. 2011. PTask: Operating System

Abstractions to Manage GPUs As Compute Devices. In Symposium on Operating Systems Principles. 233ś248.

Christopher J. Rossbach, Yuan Yu, Jon Currey, Jean-Philippe Martin, and Dennis Fetterly. 2013. Dandelion: a Compiler and

Runtime for Heterogeneous Systems. In Symposium on Operating Systems Principles. 49ś68.

Rohan Sharma, Milos Gligoric, Andrea Arcuri, Gordon Fraser, and Darko Marinov. 2011. Testing Container Classes: Random

or Systematic? 262ś277.

William Thies, Michal Karczmarek, and Saman P. Amarasinghe. 2002. StreamIt: A Language for Streaming Applications. In

International Conference on Compiler Construction. 179ś196.

Xinmin Tian, Hideki Saito, Ernesto Su, Jin Lin, Satish Guggilla, Diego Caballero, Matt Masten, Andrew Savonichev, Michael

Rice, Elena Demikhovsky, Ayal Zaks, Gil Rapaport, Abhinav Gaba, Vasileios Porpodas, and Eric Garcia. 2017. LLVM

Compiler Implementation for Explicit Parallelization and SIMD Vectorization. In Workshop on the LLVM Compiler

Infrastructure in HPC. 4.

Jan Vesely, Arkaprava Basu, Mark Oskin, Gabriel H. Loh, and Abhishek Bhattacharjee. 2016. Observations and Opportunities

in Architecting Shared Virtual Memory for Heterogeneous Systems. In International Symposium on Performance Analysis

of Systems and Software. 161ś171.

Willem Visser, Klaus Havelund, Guillaume Brat, Seungjoon Park, and Flavio Lerda. 2003. Model Checking Programs.

Automated Software Engineering 10, 2 (2003), 203ś232.

Willem Visser, Corina S. Pǎsǎreanu, and Radek Pelánek. 2006. Test Input Generation for Java Containers Using State

Matching. In International Symposium on Software Testing and Analysis. 37ś48.

Mikhail Vorontsov. 2019. Java Performance Tuning Guide. http://java-performance.info/over-32g-heap-java.

Yaron Weinsberg, Danny Dolev, Tal Anker, Muli Ben-Yehuda, and Pete Wyckoff. 2008. Tapping into the Fountain of

CPUs: On Operating System Support for Programmable Devices. In International Conference on Architectural Support for

Programming Languages and Operating Systems. 179ś188.

Anton Wijs and Dragan Bošnački. 2014. GPUexplore: Many-core On-the-fly State Space Exploration Using GPUs. In

International Conference on Tools and Algorithms for the Construction and Analysis of Systems. 233ś247.

Anton Wijs, Thomas Neele, and Dragan Bošnački. 2016. GPUexplore 2.0: Unleashing GPU Explicit-state Model Checking.

In International Symposium on Formal Methods. 694ś701.

Yonghong Yan, Max Grossman, and Vivek Sarkar. 2009. JCUDA: A Programmer-Friendly Interface for Accelerating Java

Programs with CUDA. In European Conference on Parallel Processing. 887ś899.

Vanya Yaneva, Ajitha Rajan, and Christophe Dubach. 2017. Compiler-assisted Test Acceleration on GPUs for Embedded

Software. In International Symposium on Software Testing and Analysis. 35ś45.

Wojciech Zaremba, Yuan Lin, and Vinod Grover. 2012. JaBEE: Framework for Object-oriented Java Bytecode Compilation

and Execution on Graphics Processor Units. InWorkshop on General Purpose Processing with Graphics Processing Units.

74ś83.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 177. Publication date: October 2019.

http://java-performance.info/over-32g-heap-java

	Abstract
	1 Introduction
	2 Background
	3 GPU-based Java Bytecode Interpreter
	3.1 Phases and Data Layout
	3.2 State Representation and State Update

	4 Implementation Decisions
	5 Sequence-based Test Generation
	5.1 Test Generation Drivers
	5.2 Shape Matching Mode
	5.3 Complete Matching Mode
	5.4 Multithreaded CPU Algorithm
	5.5 Multi-GPU Algorithm

	6 Execution of Randomly Generated Tests
	7 Evaluation
	7.1 Research Questions
	7.2 Hardware and Software Configuration
	7.3 Subjects
	7.4 Runtime Environments
	7.5 GVM vs. Sequential Execution on a CPU for Sequence-Based Test Generation
	7.6 Manual AOT Transformation
	7.7 Parallel Generation using Multiple CPU Threads and GPUs
	7.8 Case Study: Number of tinyBees
	7.9 Execution of Randomly Generated Tests
	7.10 Thread Divergence and Memory Efficiency
	7.11 Discussion of Dedicated Memory for CPU Runs

	8 Limitations and Future Work
	8.1 Limitations
	8.2 Future Work

	9 Related Work
	10 Conclusion
	A Subjects of Randomly Generated Tests
	Acknowledgments
	References

