
COUPJAVA: A Dataset of Code Upgrade Histories
in Open-Source Java Repositories

Kaihang Jiang
University of Waterloo

Waterloo, Canada
k52jiang@uwaterloo.ca

Bihui Jin
University of Waterloo

Waterloo, Canada
bihui.jin@uwaterloo.ca

Pengyu Nie
University of Waterloo

Waterloo, Canada
pynie@uwaterloo.ca

Abstract—Modern programming languages are constantly
evolving, introducing new language features and APIs to enhance
software development practices. Software developers often face
the tedious task of upgrading their codebase to new programming
language versions. Recently, large language models (LLMs) have
demonstrated potential in automating various code generation
and editing tasks, suggesting their applicability in automating
code upgrade. However, there exists no benchmark for evaluating
the code upgrade ability of LLMs, as distilling code changes
related to programming language evolution from real-world
software repositories’ commit histories is a complex challenge.

In this work, we introduce COUPJAVA, the first large-scale
dataset for code upgrade, focusing on the code changes related
to the evolution of Java. COUPJAVA comprises 10,697 code
upgrade samples, distilled from the commit histories of 1,379
open-source Java repositories and covering Java versions 7–
23. The dataset is divided into two subsets: COUPJAVA-FINE,
which captures fine-grained method-level refactorings towards
new language features; and COUPJAVA-COARSE, which includes
coarse-grained repository-level changes encompassing new lan-
guage features, standard library APIs, and build configurations.
Our proposed dataset provides high-quality samples by filtering
irrelevant and noisy changes and verifying the compilability of
upgraded code. Moreover, COUPJAVA reveals diversity in code
upgrade scenarios, ranging from small, fine-grained refactorings
to large-scale repository modifications.

Index Terms—Code upgrade, software evolution, Java, dataset,
benchmark

I. INTRODUCTION

Modern programming languages, such as Java, frequently
evolve to introduce new language features and application
programming interfaces (APIs). Code upgrade, i.e., adapting
the codebase to a new programming language version, is an
important task that developers frequently need to perform
for functionality and security purposes [13], [23], [24]. Code
upgrade can be enforced by the end of support of older
programming language versions; as an example, Java receives
5 years of support for LTS versions and only half a year
of support for non-LTS versions [18]. Replacing deprecated
features and APIs to newer ones can be a tedious and time-
consuming process.

Large Language Models (LLMs) trained on programming
languages and natural languages [7], [16], [22] have demon-
strated prosperous promise in reshaping software develop-
ment across various realms of applications, such as code
editing [19], [31], [32], API migration [9], [11], [15], refac-

toring [25], and testing [14], [30]. By 2024, Google’s AI-
generated code surpasses 25% of new development [6].

LLMs can be a powerful tool for automating code upgrade.
Prior work using LLMs for API migration [9], [11], [15]
and automated code refactoring [25] focuses on small code
edits caused by replacing a deprecated API (which may or
may not be related to a new programming language version).
However, code upgrade in real-world software repositories can
involve replacing a large amount of older (but not necessarilly
deprecated) APIs, language features, and build configurations
to newer ones. There has been no benchmark for understanding
LLMs’ code upgrade capability in practice.

To bridge this gap, we propose COUPJAVA, a high-quality
dataset of code upgrade samples mined and cleaned from
open-source software repositories. COUPJAVA consists of
10,697 samples in two granularities:

1) COUPJAVA-FINE: 9,784 fine-grained (method-level)
refactorings towards new language features, representing
the scenario of upgrading individual methods;

2) COUPJAVA-COARSE: 913 coarse-grained (repository-
level) changes from an old language version to a new
language version, representing the scenario of upgrading
the repository as a whole.

Analysis of the data collected in COUPJAVA reveals sev-
eral interesting findings. In COUPJAVA-FINE, we found that
developers are more likely to adopt new language features
that involve simple code edits. In COUPJAVA-COARSE, we
found that developers frequently need to modify non-code
files during repository-level code upgrade, underscoring the
importance of context-aware LLMs on this task.

Our contributions of this work include:

• We present COUPJAVA, a dataset of 10,697 code upgrade
samples, meticulously curated from 1,379 repositories cov-
ering Java versions 7–23.

• We document the steps and challenges faced during the
construction of COUPJAVA.

• We analyze the distributions and characteristics of different
types of code upgrade in COUPJAVA, as well as envision
the application of LLMs on automating code upgrade.

COUPJAVA and its collection scripts are available at
https://github.com/uw-swag/CoUpJava

https://github.com/uw-swag/CoUpJava


Fig. 1: Example of replace anonymous with lambda code
upgrade, from intino/magritte commit 8c707bb2.

II. DATASET CONSTRUCTION

Collecting real-world code upgrade samples from open-
source repositories is challenging due to their diverse develop-
ment workflows. Developers frequently mix multiple concerns
(e.g., bug fixes and documentation improvements) in the same
changeset [12], and accurately extracting code upgrade code
changes from the noisy changesets can be cubersome. More-
over, some historical revisions of open-source repositories may
fail to build any more due to their dependencies being removed
from online (especially for repositories with customized build
configurations or dependency repositories).

To address these challenges, we design a robust data con-
struction workflow to collect COUPJAVA from open-source
Java repositories. Specifically, COUPJAVA consists of two
subsets, covering two different data granularities and usage
scenarios. COUPJAVA-FINE contains fine-grained, method-
level code changes, where each sample is a minimal change
that upgrades an usage of an old language feature to the
equivelant new language feature; this subset simulates the
usage scenario where the developer intends to incrementally
upgrade the codebase with new language features. COUP-
JAVA-COARSE contains coarse-grained, repository-level code
changes, where each sample records a verified upgrade of the
repository from an old language version to a new one; this
subset represents the usage scenario where the developer aims
to upgrade the entire codebase in a single effort.

A. Selection of Repositories and Java Versions

We aim to collect data from as many open-source Java
repositories as possible and covering a wide range of Java
programming language versions. We utilize the GitHub search
API [5] to search for repositories. GitHub search API has a
limitation where each query can return at most 1,000 results,
thus we perform multiple queries for each Java version. We
exclude duplicate repositories across multiple queries as well
as fork repositories to ensure the quality of our data sources.

In this work, we focus on Java versions 7–23. Java 7,
released in July 2011, is the oldest version that still allows
practically compiling code on mordern operating systems1.

1The official development toolkits for Java 4 and before cannot be installed
on 64bit Linux systems. Although the development toolkits for Java 5
and 6 are avilable, we encounter a security protocol issue when fetching
the dependencies of the open-source repositories, as the online dependency
hosting services require TLS 1.3 that is not supported in Java 5 and 6.

Fig. 2: Example of replace loop with pipeline code upgrade,
from padreati/rapaio commit 6d086a1d.

Java 23, released in September 2024, is the latest released
version at the time of dataset construction.

To identify the Java version used by a repository, we parse
the build configuration file (pom.xml) of Maven [26], a popular
build system in the Java ecosystem. In pom.xml, the Java
version used can be specified as “⟨maven.compiler.source⟩
version ⟨/maven.compiler.source⟩” , where version is
an integer from [7, 23]; however, due to Java’s historical
versioning schema, the version number for Java 7–10 can also
be written in the format of 1.7–1.10. We run a GitHub search
API query for each version with the following parameters
(where filename : pom extension : xml limits the search in
pom.xml, and path : / limits the search in the file only at the
repository’s root directory):

⟨maven.compiler.source⟩version⟨/maven.compiler.source⟩
filename : pom extension : xml path : /

for version ∈ [7, 23] ∪ {1.7, 1.8, 1.9, 1.10}

B. COUPJAVA-FINE

New programming language features, such as lambda ex-
pressions introduced in Java 8, allow implementing the same
functionalities with elegant code. The upgrade from the old
code snippet using the old language features (e.g., anonymous
classes) to the new code snippet using the new language
features (e.g., lambda expressions) can be considered as a
refactoring, as the code semantics do not change.

We use a robust refactoring mining tool for Java, Refac-
toringMiner [1], [27], [28], to collect such code-upgrade-
related refactorings. RefactoringMiner detects refactorings in
the commit histories of a Java repository by analyzing abstract
syntax tree (AST) differences. Out of the 102 refactoring types
implemented in RefactoringMiner (version 3.0 as the time of
writing), five of them are relevant to code upgrade:
• replace anonymous with lambda (Java 8; Figure 1): chang-

ing anonymous class with a single method (that supports
functional interface) to a lambda expression.

• replace loop with pipeline (Java 8; Figure 2): leveraging
lambda expressions, replacing for/while/do loops with
forEach(...) expressions.

• merge catch (Java 7): merging multiple catch blocks into
one, when they have exactly the same body, using the
overloaded “|” operator to match multiple exception types.



Fig. 3: Example of try with resources code upgrade, from
valanths1990/l2j-server-datapack commit f249ce92.

TABLE I: Statistics of COUPJAVA: number of repositories,
samples, and average number of lines edited in each sample.

Dataset #Repo #Data #Line∆
COUPJAVA 1,379 10,697 401.2

COUPJAVA-FINE 742 9,784 10.7
COUPJAVA-COARSE 742 913 4,585.6

• replace generic with diamond (Java 7): ommit-
ing the generic type parameter when it can be in-
ferred from the context (e.g., List⟨Integer⟩ l =
new ArrayList⟨Integer⟩() where the second Integer

can be inferred from the first one).

• try with resources (Java 7; Figure 3): simplifying the
try-catch-finally block with the newly introduced try-
with-resources feature, so that the resource variables can be
declared in the try(...) construct.

We instruct RefactoringMiner to mine these five types of
refactorings from the open-source repositories selected in
§II-A. Each output from RefactoringMiner includes the refac-
toring type and description, the revision where the refactoring
is found, the code element locations (file path, AST type, line
and column numbers) before and after refactoring. From the
code element locations, we locate the methods containing the
code elements before and after the refactoring.

However, we find that a significant portion of these refactor-
ings are entangled with other code edits irrelevant to code up-
grade, such as formatting code and changing logging content.
We decide to filter out such cases and collect COUPJAVA-FINE
as a purified dataset with only code upgrade edits. Specifically,
we compare the changed lines reported by RefactoringMiner
(that only contains the refactored part) against the git diff
for the method. If git diff contains more changed lines than
RefactoringMiner’s diff, we discard such data. Note that we do
not attempt to craft a diff based on RefactoringMiner’s output
(e.g., from old revision of code, modifying the changed lines
reported by RefactoringMiner and copying the other lines)
because doing so frequently leads to uncompilable code.

Each sample in COUPJAVA-FINE includes: repository
name, the revision’s hash and timestamp, the refactoring type
and description, the method on the old revision, and the
method on the new revision.

C. COUPJAVA-COARSE

During the collection of COUPJAVA-FINE, we noticed
that code upgrade frequently requires changes beyond the
method level, e.g., deleting methods/classes that can be better
replaced by new APIs introduced in the new Java version.
Sometimes, developers also change the non-code portion of
the repository, e.g., the build configuration file for upgrading
dependencies’ versions. Disentangling such code edits into
atomic ones corresponding to specific new language features
or new/deprecated APIs can be extremely difficult. Instead,
we decide to use compilability check2 to determine if a code
upgrade is successful or not, considering that newer LLMs
with larger context windows have the potential to perform
large and complicated code edits. We collect edits at the
repository level, preversing edits in all code and non-code files,
as a realistic benchmark on the challenging code upgrade task.

For each repository, we search for the revisions that up-
grades the Java version specified in its build configuration
file (pom.xml), with the help of git’s regex search func-
tionality: git log -G ′⟨maven.compiler.source⟩′. Then, we
ensure that the repository is compilable (i.e., the command
mvn clean test-compile succeeds) on the revisions before
and after the Java version change. If the revision right be-
fore/after the Java version change is not compilable, we move
to try at most 3 revisions prior/subsequent to that revision, and
discard the data if all 3 trails fail. This approach excludes the
intermediate revisions where the code upgrade is in progress.

We ensure that the revisions collected in our dataset are
compilable for two reasons: (1) compilable code is more likely
to be high-quality code and less likely to contain unfinished
edits; (2) compilation can be used as an oracle to decide if
code upgrade is successful, when building an automated code
upgrade technique on our dataset. We use the official Java
development toolkits version 7–23 to compile the repositories,
downloaded from Oracle’s Java Archive [17]. We use Maven
3.9.9 as the build system, except for Java 7 where an older
version of Maven 3.8.8 is required. The runtime environments
for all Java versions and the script to switch among them are
provided together with our dataset for replicability.

Each sample in COUPJAVA-COARSE includes: repository
name, the old/new revisions’ hash and timestamp, the old/new
Java versions, and the changeset between the two revisions.

III. DATASET STATISTICS

Table I shows the statistics of COUPJAVA and its two sub-
sets, COUPJAVA-FINE and COUPJAVA-COARSE. COUPJAVA
contains 10,697 code upgrade samples (9,784 fine-grained and
913 coarse-grained) from 1,379 repositories. On average, each
fine-grained code upgrade involves 10.7 lines of code edits,
and each coarse-grained code upgrade involves 4,585.6 lines
of code and non-code edits. Although 15,391 repositories are
selected following the process in §II-A, the final collected data

2Although tests are available in many of the open-source Java repositories,
directly performing test execution check is not practical due to the difficulty
in setting up correct runtime environments and excluding falky tests. We leave
integrating tests into our benchmark as future work.



TABLE II: Code upgrade types in COUPJAVA-FINE.

Code Upgrade Type Java Ver. #Repo #Commit #Data #Lineold #Linenew #Line∆
all N/A 742 2,577 9,784 31.8 29.5 10.7

replace anonymous with lambda 8 204 592 1,884 40.4 35.7 23.6
replace loop with pipeline 8 9 9 10 10.7 9.0 4.5
merge catch 7 103 164 320 32.3 28.6 8.1
replace generic with diamond 7 384 1,199 5,144 26.4 26.2 2.9
try with resources 7 293 732 2,426 36.8 32.0 17.6

TABLE III: Edits by file type in COUPJAVA-COARSE.

File Type #Data #Filemod #Fileadd #Filedel
all 913 17.2 7.9 9.4

Java source code 546 17.9 7.9 12.7
Java test code 249 3.7 1.6 0.3
build scripts 913 1.6 0.1 0.0
others 576 6.2 4.2 2.7

comes from a smaller set of repositories, because we apply
strict filters to collect only high-quality samples.

Table II presents the distributions of data samples in COUP-
JAVA-FINE by code upgrade refactoring types. We found that
replace generic with diamond is the most popular code upgrade
type, with 5,144 samples spanning 1,199 revisions of 384
repositories, followed by try with resources (2,426 samples)
and replace anonymous with lambda (1,884 samples). The
replace anonymous with lambda code upgrade involves the
largest diff (23.6 diff lines on average), while replace generic
with diamond are among the simplest types of code upgrade
(2.9 diff lines on average).

To better understand how developers perform code upgrade
in practice, we analyze the types of files being changed in
COUPJAVA-COARSE. Specifically, we study four types of
files: Java source code (the Java files under src/main/java),
Java test code (the Java files under src/test/java), build
configuration files (pom.xml), and all other files (resources,
documentations, etc.). Table III shows the analysis results. We
find that 546 samples changed source code and 249 changed
test code, indicating that changing source code or test code
files is sometimes not required for upgrading Java versions,
thanks to the backward-compatibility design philosophy of the
Java programming language. At least one build configuration
file needs to be changed to specify the new Java version,
but we find that changes may be required in multiple build
configuration files in a repository (on average: 1.6 files per
code upgrade). We also observe a significant amount of other
files being involved in code upgrade revisions.

IV. SAMPLE APPLICATIONS AND FUTURE WORK

Automating Code Upgrade with LLMs. Our dataset is
suitable for exploring the ability of LLMs in automating code
upgrade in two usage scenarios:

1) On COUPJAVA-FINE: upgrading of individual method with
the goal of adopting a specific new language feature.
Evaluation metrics can be syntactical similarity between the
predicted code edits against ground truth, e.g., exact match

accuracy and CodeBLEU [21], plus checking whether the
edited code uses the new language feature.

2) On COUPJAVA-COARSE: upgrading the entire repository
from an old programming language version to a new one.
Evaluation metrics include compilation check (whether the
codebase can compile after integrating predicted edits) and
syntactical similarity between each file’s predicted edits
against ground truth.

Syntactical similarity metrics have the limitation of not ac-
counting for functionally correct code with alternative nam-
ing conventions or implementations. Compilation check on
COUPJAVA-COARSE can partially detect functional correct-
ness. We plan to extend COUPJAVA with executable tests, to
be extracted and cleaned to remove failing and flaky tests,
that can more accurately measure functional correctness and
enable evaluation metrics like Pass@K [2].

There are existing datasets [3], [4], [8]–[10], [29] that
explores API migrations at method-level, which are similar
to COUPJAVA-FINE. However, there exists no repository-level
code upgrade benchmark before COUPJAVA-COARSE.

Amazon Q [15], an LLM-based code assistant by Ama-
zon, offers a feature called transformation [20] that supports
repository-level code upgrades from Java 8/11 to 17. It requires
uploading the entire repository to a remote server for a code
upgrade and verification process that typically takes 10 to 30
minutes. COUPJAVA will be an ideal benchmark for evaluating
Amazon Q and other LLMs.
Future Work. In addition to collecting executable tests,
we also plan to expand COUPJAVA with data from more
open-source repositories. We will improve the construction of
COUPJAVA in several aspects: (1) supporting more refactoring
types related to code upgrade, especially those introduced in
recent Java versions; (2) detecting Java version from multiple
sources to increase coverage and robustness, including config-
uration files of other build systems (e.g., Gradle) and CI (e.g.,
GitHub Actions); (3) regularly expanding the dataset upon the
release of new Java versions.
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