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Abstract
Machine learning (ML) developers frequently use interactive com-
putational notebooks, such as Jupyter notebooks, to host code for
data processing and model training. Notebooks provide a conve-
nient tool for writing ML pipelines and interactively observing
outputs. However, maintaining notebooks, e.g., to add new features
or fix bugs, can be challenging due to the length and complexity
of the ML pipeline code. Moreover, there is no existing benchmark
related to developer edits on notebooks.

In this paper, we present early results of the first study on learn-
ing to edit ML pipeline code in notebooks using large language
models (LLMs). We collect the first dataset of 48,398 notebook edits
derived from 20,095 revisions of 792 ML-related GitHub reposito-
ries. Our dataset captures granular details of file-level and cell-level
modifications, offering a foundation for understanding real-world
maintenance patterns in ML pipelines. We observe that the edits on
notebooks are highly localized. Although LLMs have been shown
to be effective on general-purpose code generation and editing, our
results reveal that the same LLMs, even after finetuning, have low
accuracy on notebook editing, demonstrating the complexity of
real-world ML pipeline maintenance tasks. Our findings empha-
size the critical role of contextual information in improving model
performance and point toward promising avenues for advancing
LLMs’ capabilities in engineering ML code.

CCS Concepts
• Software and its engineering → Software evolution; • Com-
puting methodologies→Machine learning.
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1 Introduction
The widespread adoption of interactive computational notebooks
as a development platform in machine learning (ML), particularly
Jupyter notebooks [9], has made them essential for developing,
documenting, and debugging ML pipelines [4, 5, 20–22]. Despite
utility, maintaining notebooks presents significant challenges, such
as frequent and fragmented edits, especially when the notebooks
grow in size and complexity.

Software development and maintenance have been significantly
transformed by the advancement of large languagemodels (LLMs) [7,
12, 14, 18], offering an alternative for developers to efficiently man-
age repetitive and time-consuming code edits [10]. As notebooks
typically interleave domain-specific code on a specific topic (e.g.,
machine learning) and narrative text, it is cumbersome to apply
rule-based program analyses techniques to infer developer intent
and automate code editing. Thus, data-driven approaches like LLMs
can be ideal solutions for learning to edit code in notebooks.

Existing datasets on notebooks focus primarily on code gen-
eration and comprehension tasks [1, 5, 16, 20–22]. They do not
track developers’ code edits or revisions, limiting their relevance
for understanding and automating the maintenance of notebooks.

To bridge the gap, we propose a novel task of notebook editing:
automatically editing code in an interactive computational note-
book given the developer change intent. In this study, we establish
a testbed for the notebook editing and evaluate the performance of
the state-of-the-art LLMs on the task. The unique code structure
of notebooks poses a challenge for notebook editing compared to
general-purpose code editing. Specifically, notebooks are composed
of interleaving code cells, text cells, and execution outputs; an edit
can be localized in one cell or span across multiple cells.

Since no existing dataset exists for this task, we present the first
notebook editing dataset with 48,398 Jupyter notebook edits, mined
from 20,095 revisions across 792 ML-related GitHub repositories.
Our dataset captures detailed insights into the evolution of note-
books, offering a granular perspective on the maintenance practices
of real-world ML pipelines. We capture both file-level and cell-level
edits, along with commit messages to represent developer change
intents. Notably, while on average each repository has 8,380 lines
of code, the majority of developer edits target specific portions of
notebooks, with an average of 166 lines modified per revision.

To motivate further study on this new direction, we evaluate
the performance of code LLMs on our notebook editing dataset.
Our experiments are performed based on a state-of-the-art code
LLM, DeepSeek-Coder [7], and explore both in-context learning and
supervised finetuning. Surprisingly, even with finetuning, the LLMs
fail to perform correct edits on notebooks at either file-level or cell-
level, despite the base LLM’s effectiveness in general-purpose code
tasks [7]. This highlights the challenges in automating real-world
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notebook edits and suggests that combining LLMs with execution
and agentic frameworks may be necessary for this task.

The main contributions of this paper include:
• We propose notebook editing, a novel task for automatically
editing ML pipelines in notebooks given developer change intent.

• We collect a dataset of 48,398 Jupyter notebook edits, capturing
both file-level and cell-level edits with commit metadata.

• We benchmark state-of-the-art code LLMswith few-shot learning
and supervised finetuning and find that notebook editing remains
challenging for LLMs.

• Based on analyses of our dataset and early experiment results,
we discuss next steps towards improving LLMs’ performance on
the notebook editing task.

Our dataset and experiment scripts are open-sourced at
https://github.com/uw-swag/ipynb-edit.

2 Study Design
2.1 Dataset Construction
Figure 1 shows an overview of the our dataset construction steps,
which consists of three phases: fetching GitHub repositories, pro-
cessing data, and filtering data.

First, we identify a list of GitHub repositories that contain note-
books with ML pipelines. In this work, we focus on Jupyter note-
book [9]. We utilize the GitHub Search API [6] to query the GitHub
repositories that are tagged with “jupyter-notebook” and “machine-
learning” topics. We keep the top 1,000 repositories, sorted based
on the popularity (determined by the number of stars).

Then, we clone each repository to extract and process data, specif-
ically through the following steps:
(1) retrieve the commit history using gitlog, and record the hash

and commit message for each entry that modifies at least one
Jupyter notebook (with .ipynb file extension);

(2) fetch the content of the notebook file before and after each edit
using git show;

(3) use the SequenceMatcher functionality in Python’s difflib li-
brary to obtain the code difference (diff) between the old and
new versions of the notebook file, both at cell level (within each
file) and at line level (within each changed cell).
Note that we focus on the code cells in the Jupyter notebooks,

and discard the text cells (which are for documentation purposes)
and execution outputs (which may frequently change unintention-
ally due to rerunning). The collected dataset includes the repository
name, commit hash, file name, commit message, old and new ver-
sions of code, cell-level diff, and line-level diff. After processing,
we only retain Python code in the notebooks and discard the text
(markdown) cells and execution outputs.

Finally, we refine the dataset to ensure the quality of our dataset.
Specifically, we exclude the entry whose commit messages contain
two or fewer words and remove duplicate entries.

2.2 LLM Experimental Setup
2.2.1 Models. We use DeepSeek-Coder [7] as the base LLM in
our study, which is a pretrained decoder-only transformer model
tailored for code-related tasks. Specifically, we use the instruction-
finetuned version with 1.3B and 6.7B parameters.

Git Log
• Repo name
• Commit Hash
• Commit Message

Git Show
• before commit
• after commit

Sequence Matcher
• Cell level 
• Line level

Fetching Github Repo Processing Data

GitHub Search API
127740 files

48398 files

Filtering Data

Commit Message 
Words > 2

Duplication Removal

Topics contain
Juypter Notebook &
Machine Learning

Top 1000 repositories

Sort By # of Stars

Figure 1: An overview of data construction workflow.

2.2.2 Scenarios and Inputs/Outputs. We design two scenarios of
completing the notebook editing task:
Cell-level prediction. The developer selects which part (a subset
of cells) of the notebook to edit. The LLM is given the inputs of the
commit message and the old version of the selected cells, and is
expected to output the new version of those cells. In the experiment,
we presume the selected cells to be the ground-truth subset of cells
changed by developers.
File-level prediction. The LLM is given the inputs of the commit
message and the old version of notebook (with all cells concatenated,
delimited by <cell_#></cell_#> tags, where # is the cell number),
and is expected to output the new version of the entire notebook.

In both scenarios, the inputs to the LLM are embedded in a
prompt that (1) lets the LLM impersonate the role of an expert
software developer with an instruction, (2) describes the inputs and
outputs of the given task, and (3) supplies few-shot examples.

2.2.3 Learning Strategies. We explore two distinct strategies to
train the LLM on the notebook editing task:
In-context learning. LLMs can learn to perform an unseen task
with a number of few-shot examples in the prompt [3]. In-context
learning does not incur any training cost but requires the task to be
similar to the pretraining task. We provide five few-shot examples
randomly sampled from the training set.
Supervised finetuning. With additional finetuning on the train-
ing set, LLMs can better learn to perform the task and adapt to the
input/output format required by the task. We adopt a parameter-
efficient finetuning technique, LoRA [8]. Due to the high cost in-
curred in training, we only perform finetuning on the 1.3B model.

2.2.4 Environment and Hyper-Parameters. We conduct our experi-
ments on a server with AMD EPYC 7343 CPU (16 Cores @ 1.5GHz),
Nvidia RTX A6000 GPU (48G RAM), running Ubuntu 22.04 LTS.
To account for randomness, we repeat each of our finetuning ex-
periment three times and report the average results. Our model
inference is deterministic since we adopt greedy decoding.

3 Results
3.1 Dataset Statistics and Analysis
3.1.1 Quantitative Analysis. Table 1 shows the size of our notebook
editing dataset after splitting into training/validation/testing sets.
Table 2 presents statistics including commit message length, file/cell
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Table 1: Size of our notebook editing dataset after splitting.

Set #Proj #File LOC #Commits #ΔCells #ΔLines

full 792 48,398 6,636,971 20,095 508,634 3,336,142

train 536 27,515 3,510,884 12,874 308,731 1,899,031
val 76 12,469 1,988,162 3,660 116,313 970,452
test 152 8,414 1,137,925 3,561 83,590 466,659

Table 2: Statistics of our notebook editing dataset.

Name Avg Min Med 75% 90% Max

commit message #words 5.66 3 5 7 9 72
file #token before edit 1,511.60 1 593 2,092 4,191 50,451
file #token after edit 2,079.28 1 1,260 2,756 4,845 79,893
changed cells #token before edit 344.14 1 1 204 944 30,800
changed cells #token after edit 841.14 1 191 947 2,437 77,597
changed #cells per edit 29.73 1 11 26 56 16,969
changed #lines per edit 173.56 1 55 151 371 153,689
changed #token per edit 2,577.88 2 761 2,209 5,424 2,188,763

sizes before/after edits, and the number of cells/lines/tokens per
diff. We summarize key characteristics of our dataset below.

Notebook edits generally contain more code addition than
removal. The files show an average of 1,511.60 tokens pre-edit and
2,079.28 tokens post-edit, which suggests a focus on incremental
development and the inclusion of additional content during updates.

The size of edits varies and can be very large. We observe
an extremely long-tail distribution of code edit size in our dataset,
ranging from single-line or single-cell edits to 153K lines or 17K
cells of edits. Larger code edits can be significantly harder to predict,
as they may exceed LLMs’ context length.

Developer edits in notebooks focus on localized areas. By
comparing the average number of tokens in files (1,511.60–2,079.28)
and the average number of tokens in the changed cells (344.14–
841.14), we observe that only a part of the cells are changed in each
version. We find that the median number of cells changed is 11, and
in many cases, only one cell is touched in a code edit.

Developers tend to write very brief commit messages. Com-
mit messages have only 5.66 words on average, with 75% containing
up to 7 words (even after filtering non-descriptive commit messages
of two or fewer words). This brevity poses a challenge in under-
standing developer change intents purely from commit messages.

3.1.2 Qualitative Analysis. To qualitatively understand the content
of notebook edits, we analyze the frequent tokens in the commit
messages and code edits (excluding symbols and stop words).
Commit messages. Our key finding is that developers prioritize
adding new functionalities over fixing or removing, with a
trend on performing edits at the notebook or file level. The
word “add” appears 12,083 times, significantly more than “update”
(7,484), “fix” (4,309), or “remove” (2,571), showing developers fre-
quently increment their ML pipelines with new functionalities and
components. Although “fix” and “remove” are secondary to “add”,
their combined frequency (6,880) indicates that nearly 57% as much
effort is dedicated to maintenance and refinement compared to
adding new features. Such balance shows that while new features
dominate, significant resources are allocated for ensuring quality
and removing redundant elements. In addition, the frequent occur-
rence of structural terms like “notebook” (7,910) and “file” (6,488)
hints that developers frequently orchestrate edits at the file level.
Code edits. Comparing the commit messages between the code
addition and deletion, we find that the code edits predominantly

reflect iterative development of ML workflows, including
frequent adjustments to dependencies, data handling, mod-
ularity, and cloud deployment configurations. In particular,
“import” is the most frequently deleted word (49,271) and added
word (156,220), indicating that most changes tend to rely on modify-
ing model’s dependencies. Additionally, high frequency of domain-
specific terms, such as “model” (35,907 added / 11,687 removed),
“dataset” (14,425/5,120), “train” (14,189/4,832), and “test” (14,109/4,475),
largely pertain to iterative adjustments to ML models, datasets, and
associated processes.

3.2 LLM Evaluation Results
3.2.1 Metrics. To evaluate the accuracy of LLMs in performing
code edits, we use several code similarity metrics that are frequently
used in prior work on LLM for code generation [13, 23] to compare
the predicted new code against reference (developer-written) new
code, including: BLEU [15], which computes the percentage of
overlapping 1 ∼ 4-grams; CodeBLEU [17], which extends BLEU
for code-specific tasks by incorporating syntax and data flow; Edit
similarity (EditSim) [19], defined as 1 minus Levenshtein edit dis-
tance; andRougeL [11], which uses the F1-score between subtoken
matches based on the longest common subsequence.

These similarity metrics don’t capture functional correctness
when the generated code differs from the reference code. For file-
level prediction, we measure the percentage of Executable files
without runtime errors. We use a docker environment provided by
Kaggle with popular ML libraries installed.1 Of the 8,414 files in our
test set, 1,134 (13.74%) are executable in our environment, and we
only measure Executable on this subset following prior work [13].
Models may generate trivial but executable files (e.g., with only
import statements), therefore we additionally measure LOC as a
proxy for whether the generated code is non-trivial. Future work
should develop better functional correctness metrics verifying both
executability and the correctness of execution results.

3.2.2 Results and Findings. Table 3 and Table 4 compare the per-
formance of DeepSeek-Coder models on cell-level and file-level
notebook editing, respectively. The first two rows are 1.3B and
6.7B models with in-context learning; the next two rows (with “-
postproc” suffix) attempt to fix the formatting errors in the outputs
(e.g.., removing redundant code block symbols or repeated instruc-
tions) to improve the performance of in-context learning; the last
row shows the results of supervised finetuned 1.3B model.

All models, even after supervised finetuning, face difficul-
ties on the notebook editing task, reflecting the complexity
of the task. In-context learning with 1.3B or 6.7B model achieves
low accuracy, which is expected, as the size of the edits can be large
and hard to learn within LLMs’ limited context window. In fact,
we observe that in-context learning sometimes fails to follow our
desired input/output formats and mistakenly outputs redundant
code block tokens or repeating a part of prompts, and our attempt
to address these problems with postprocessing results in moderate
performance improvements. Supervised finetuning 1.3B achieves
the best performance, with a CodeBLEU score of 30.55 on cell-level
prediction and 45.26 on file-level prediction. However, this does
1https://gcr.io/kaggle-gpu-images/python. Setting up correct execution environments
for each repository and revision is challenging, which we leave as future work.
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Table 3: Cell-level prediction results.

Model BLEU CodeBLEU EditSim RougeL

1.3B 8.52 17.26 26.52 21.49
6.7B 13.30 20.49 31.01 28.05
1.3B-postproc 8.59 18.12 26.64 21.66
6.7B-postproc 13.44 22.06 31.23 28.30

1.3B-finetune 25.86 30.55 46.53 40.80

Table 4: File-level prediction results. The functional correct-
ness metrics (Executable and LOC) are measured on the sub-
set of files where developer-written files are executable.

Model BLEU CodeBLEU EditSim RougeL Executable LOC

1.3B 10.75 15.39 31.78 27.23 73.66 97.49
6.7B 11.76 15.34 34.68 30.45 15.17 772.51
1.3B-postproc 10.78 17.42 31.76 27.36 87.83 81.97
6.7B-postproc 11.81 18.64 34.70 30.57 25.49 676.77

1.3B-finetune 27.46 45.26 47.38 53.13 34.07 720.20

not meet the demands of real-world code editing. Considering that
the same model, DeepSeek-Coder, has been shown to be effective
on many other code generation and editing tasks, our finding hints
that notebook editing may be one of the most challenging tasks.

LLMs perform better on file-level editing than cell-level
editing, where the former one involves more contextual code
than the latter one. We initially reckon that the additional code
context included in file-level prediction may distract the LLM, and
knowing the edit locations (as in cell-level prediction) would give
advantages to the LLM. Nevertheless, the results support the op-
posite direction: the finetuned 1.3B model achieves 50% higher
CodeBLEU on file-level prediction than cell-level prediction. This
means that contextual information in the rest of the notebook file
may be important, e.g., for the LLM to learn coding styles and ex-
amples. Note that models predict Python code rather than JSON
raw format of the notebook in our experiment.

LLMs are weak at performing functionally correct note-
book edits. From the last two columns of Table 4, we observe that
although 87.83% of the files generated by the 1.3B-postproc model
are executable, the average LOC is only 81.97, which is much lower
than the average LOC of reference files (577.87), meaning that the
generated files are likely not functionally correct (i.e., they are exe-
cutable but not generating the expected execution results). Using
larger models or performing finetuning improves LOC and poten-
tially leads to more meaningful code (as suggested by the similarity
metrics), but the generated files usually contain runtime errors. For
example, the 1.3B-finetune model only has 34.07% executable rate.

4 Discussions and Future Work
As the first work in this direction, our experiments are still limited,
namely, only one type of the LLM (DeepSeek-Coder) and two sizes
of LLMs (1.3B, 6.7B) are used, and functional correctness metrics
(e.g., checking if the edited notebook is executable) are lacking.
The short length of commit messages in our dataset indicates that
they may not be a good representation of developer change intents,
as supported by prior studies [2]. Future work may supplement
the extraction of developer change intents with other sources, e.g.,
issue trackers and pull requests data.

At this stage, we avoid excessive data filtering so that we can
comprehensively understand the needs of notebook editing in the
real-world data. We find that the code edits in notebooks are diverse
in terms of size, intents, and topics. Leveraging these insights, future
work can explore subsets that focus on specific types of code edits.

We have shown that notebook editing can be an extremely chal-
lenging task for pure LLM solutions. Based on our experience, we
plan to explore retrieval-augmented-generation and agentic tech-
niques to improve the performance of LLMs on predicting notebook
edits because extracting relevant contextual information is critical
in performing targeted edits in usually lengthy notebooks.

5 Related Work
LLMs have been utilized in various software engineering tasks [1, 5,
16, 20–22]. In particular, it has demonstrated promise in code gener-
ation within Jupyter notebooks [1, 22]. These datasets underscore
the capacity of LLMs to leverage natural language and code content
for context-based code generation and maintenance tasks. Nonethe-
less, it is not yet clear the ability of their benchmarks to longer
contexts in Jupyter notebooks, especially when the code depends
on prior cells or external resources, which may not generalize well
to unseen or non-typical notebook styles. Studies [5, 16] provide
insights into Jupyter notebooks code metrics to understand and
improve computational notebook quality. Despite these advance-
ments, key challenges remain, such as understanding developers’
code editing behaviors and improving LLMs’ performance on tasks
involving real-world maintenance scenarios in Jupyter notebooks.
To this, Wang et al. [21] leverage run-time information for ML bug
detection in Jupyter notebooks by incorporating dynamic data into
static analysis methods, which underscores a promising direction
for integrating static and dynamic analyses to address challenges in
ML code quality. In our study, we propose a dataset of 48,398 Jupyter
notebooks edits from 20,095 revisions across 792 ML repositories,
capturing cell-level and file-level changes, along with commit meta-
data, explore the capability of LLMs for suggesting code edits in
interactive ML notebooks, and demonstrate the complexity of our
dataset in representing real-world ML maintenance tasks.

6 Conclusions
We present the first study on learning to edit ML pipelines in Jupyter
notebooks. By mining 20,095 revisions of 792 open-source ML-
related GitHub repositories, we collect a dataset of 48,398 notebook
edits. Our dataset reveals the diversity of notebook editing intents
and the challenging size of edits for LLMs to automate. To motivate
further research on notebook editing, we evaluate LLMs’ ability
to predict both file-level and cell-level edits. Even with supervised
fine-tuning, LLMs exhibit low accuracy on our dataset, highlighting
the complexity of real-world ML maintenance tasks.
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