On the Naturalness of Hardware Descriptions

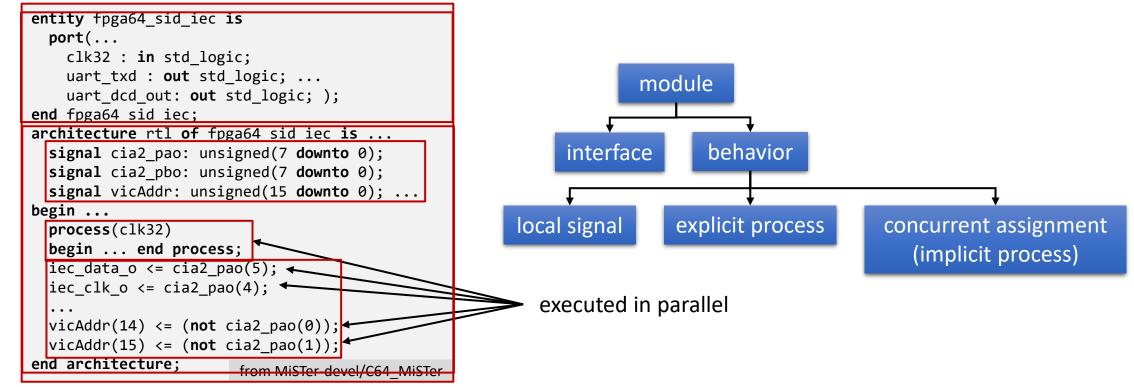
Jaeseong Lee, Pengyu Nie, Junyi Jessy Li, Milos Gligoric

ESEC/FSE 2020

Partially supported by:

Motivation: Success of Mining Software Repositories

- Corpora: software artifacts available in open-source repositories
 Code, natural language documentations, pull requests, open issues...
- **Observation**: code in programming languages is natural (repetitive and predictable) just like text in natural language


 $\,\circ\,$ ICSE'12 On the Naturalness of Software: Java, C

o ICSE'19 Natural Software Revisited: Java, C, C#, JavaScript, Python, Ruby, Scala

- **Applications**: statistical and learning-based models for code completion, code repair, code search, code summarization...
- Limitation: existing work and applications have focused almost exclusively on general-purpose languages
- Unexplored: hardware description languages

Hardware Description Languages (HDLs)

- Usage: describing logic circuits
- Examples: VHDL, Verilog, SystemVerilog
- Key difference: processes are executed in parallel

Our Contributions

Corpora

- Mined hardware descriptions repositories corpora from GitHub
- 3 popular languages: VHDL, Verilog, SystemVerilog; 8.5M lines of code

Naturalness

- Conducted the first comparative evaluation of the naturalness of hardware descriptions by building language models and reporting standard cross entropy measures
- Compared the naturalness of hardware descriptions written in VHDL, Verilog, SystemVerilog against the naturalness of software written in Java

Assignment Completion Model

 Designed and implemented deep learning models for predicting the right hand side of concurrent assignments in VHDL

Our Contributions

Corpora

- Mined hardware descriptions repositories corpora from GitHub
- 3 popular languages: VHDL, Verilog, SystemVerilog; 8.5M lines of code

Naturalness

- Conducted the first comparative evaluation of the naturalness of hardware descriptions by building language models and reporting standard cross entropy measures
- Compared the naturalness of hardware descriptions written in VHDL, Verilog, SystemVerilog against the naturalness of software written in Java

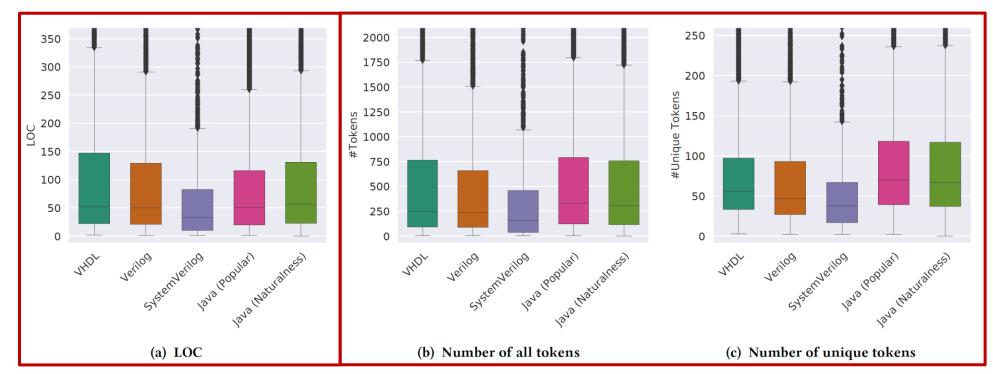
Assignment Completion Mode

 Designed and implemented deep learning models for predicting the right hand side of concurrent assignments in VHDL

Hardware Descriptions Corpora

• Mine 100 top repositories from GitHub (ranked by the number of stars) for VHDL, Verilog, SystemVerilog

- Keep only parsable files (using open-source parsers generated using ANTLR)
- Filter out duplicate files


Corpus	#Repos			
VHDL	100			
Verilog	100			
SystemVerilog	100			

Java Corpora

- Java (Popular): top 10 repositories from GitHub at the time of our study
- Java (Naturalness): 10 repositories from ICSE'12 On the Naturalness of Software

Corpus	#Repos	#Parsable Files	%Duplicate Files	#Unique Files	LOC	#Tokens	Vocab. Size
VHDL	100	13,554	15.5%	11,459	4,759,308	14,572,639	227,117
Verilog	100	7,219	4.8%	6,869	3,433,764	8,238,560	273,893
SystemVerilog	100	2,021	6.5%	1,890	317,886	925,656	28,693
Java (Popular)	10	32,294	3.2%	31,264	6,672,160	23,502,694	387,812
Java (Naturalness)	10	9,886	2.6%	9,630	2,457,854	6,926,953	147,682

Corpora Statistics

- Hardware descriptions in VHDL are more verbose than Verilog
- Hardware descriptions in SystemVerilog is shorter
- #Tokens and #Unique Tokens are higher in Java repositories than HDL repositories
- #Tokens and #Unique Tokens are smaller in SystemVerilog than VHDL and Verilog

Our Contributions

Corpora

- Mined hardware descriptions repositories corpora from GitHub
- 3 popular languages: VHDL, Verilog, SystemVerilog; 8.5M lines of code

Naturalness

- Conducted the first comparative evaluation of the naturalness of hardware descriptions by building language models and reporting standard cross entropy measures
- Compared the naturalness of hardware descriptions written in VHDL, Verilog, SystemVerilog against the naturalness of software written in Java

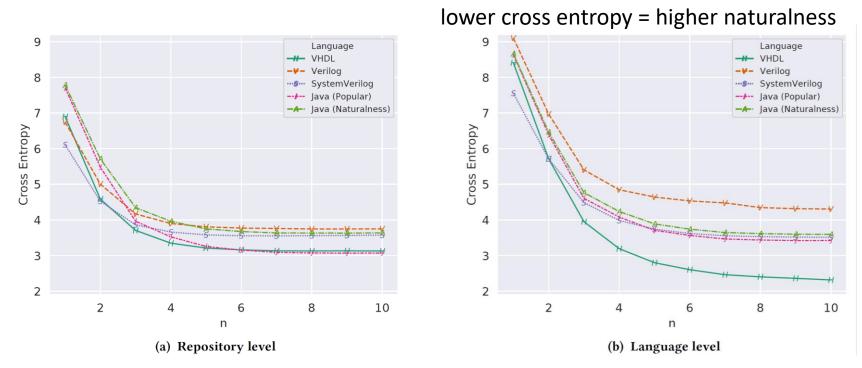
Assignment Completion Mode

 Designed and implemented deep learning models for predicting the right hand side of concurrent assignments in VHDL

Naturalness: Methodology

- Following the methodology used in ICSE'12 On the Naturalness of Software
- 1. Randomly partition the corpus into 10 equally sized folds
- 2. Train a language model on 9 folds, and apply it on the remaining fold
- 3. Compute the average cross entropy as a measurement of the naturalness

n-gram language model, $\mathbf{n} = \{1,...,10\}$ $P(\mathcal{D}) = P(w_1^m) = \prod_{\substack{i=1 \ m}}^m P(w_i | w_1^{i-1})$ $\approx \prod_{\substack{i=1 \ m}}^m P(w_i | w_{i-n+1}^{i-1})$ rows entropy $H(\mathcal{D}) = -\frac{1}{\text{len}(\mathcal{D})} \log_2 P(\mathcal{D})$ next slide


Naturalness: Repository Level vs. Language Level

- Repository level (ICSE'12 On the Naturalness of Software)
 - Consider each repository as a (mini) corpus and compute its naturalness
 - $\circ~$ Report the average among all repositories
- Language level (ICSE'19 Natural Software Revisited)
 - Consider all repositories of one programming language as a single corpus

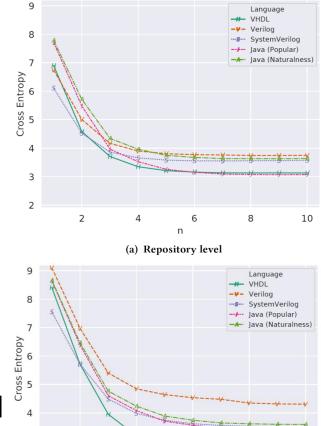
Accounts for variabilities across different repositories

Measures the regularity of each language as a whole

Naturalness: Analysis (1/2)

- Cross entropy monotonically drops as n increases
- The decline of cross entropy saturates at around 4-grams for hardware descriptions (similar to ICSE'12 On the Naturalness of Software)

Naturalness: Analysis (2/2)


- Comparisons of cross entropies of different corpora:
 - Repository level, lower n:
 VHDL ≈ Verilog ≈ SystemVerilog < Java(Popular) ≈ Java(Naturalness)
 - Repository level, higher n:
 VHDL \approx Java(Popular) < Verilog \approx SystemVerilog \approx Java(Naturalness)
 - Language level:
 VHDL < SystemVerilog ≈ Java(Popular) ≈ Java(Naturalness) < Verilog
- Hardware descriptions show clear properties of naturalness
- VHDL code has the highest naturalness among the 3 HDLs, and is higher than that of Java software at the repository level

lower cross entropy = higher naturalness

3

2

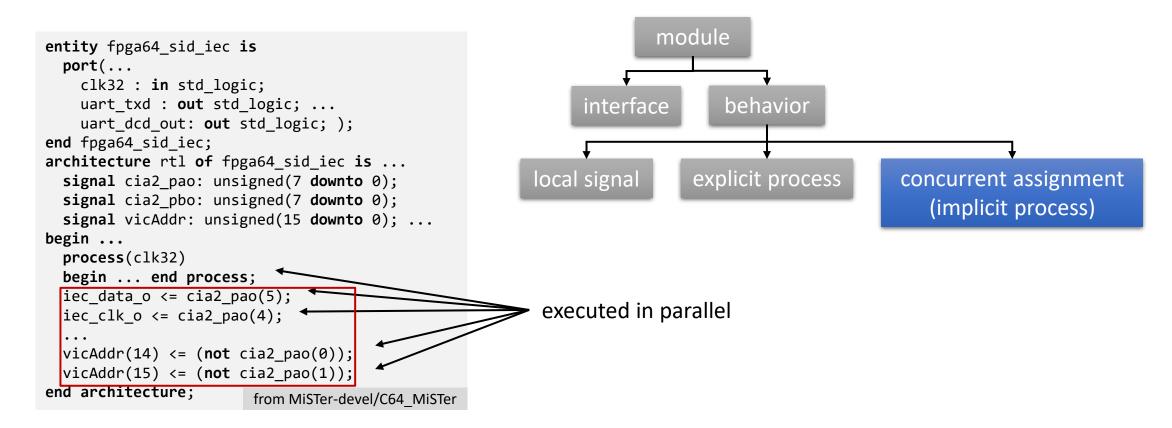
2

n (b) Language level 10

Our Contributions

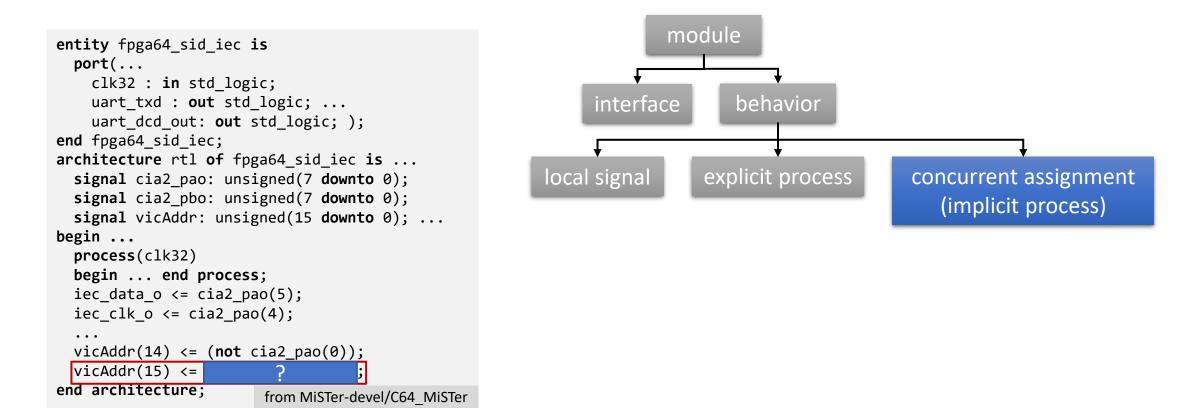
Corpora

- Mined hardware descriptions repositories corpora from GitHub
- 3 popular languages: VHDL, Verilog, SystemVerilog; 8.5M lines of code


Naturalness

- Conducted the first comparative evaluation of the naturalness of hardware descriptions by building language models and reporting standard cross entropy measures
- Compared the naturalness of hardware descriptions written in VHDL, Verilog, SystemVerilog against the naturalness of software written in Java

Assignment Completion Model

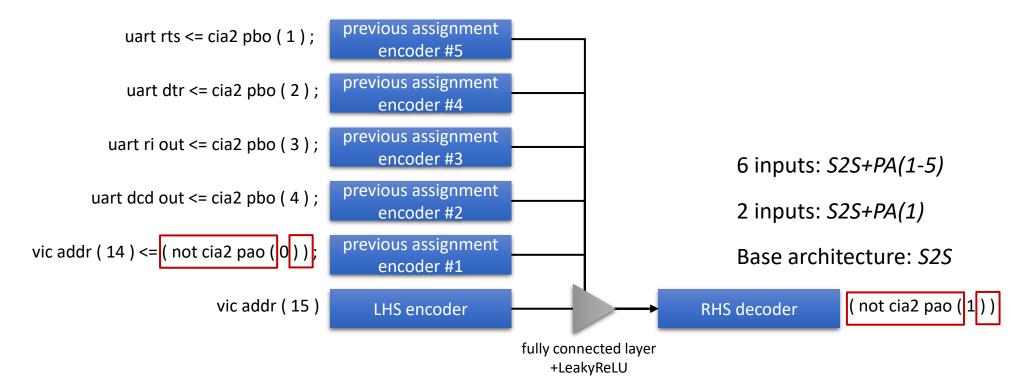

 Designed and implemented deep learning models for predicting the right hand side of concurrent assignments in VHDL

Assignment Completion: Task

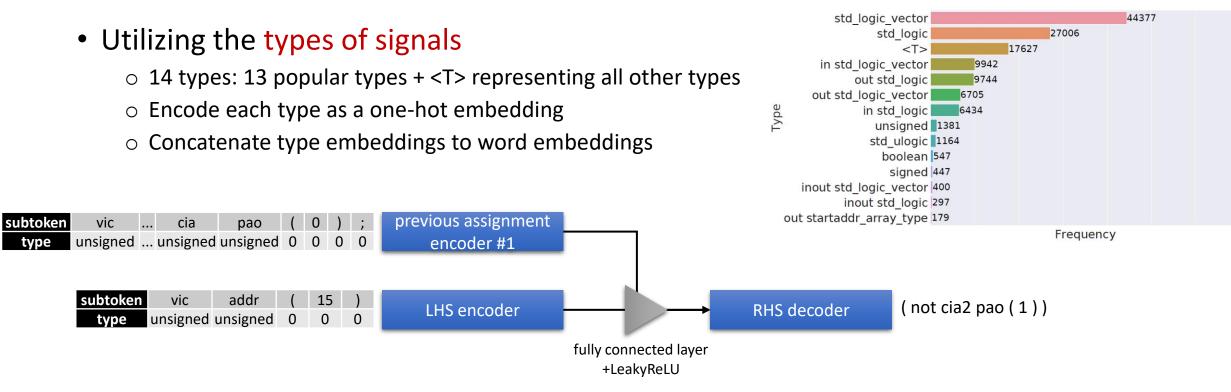
Assignment Completion: Task


• Given the left hand side of a concurrent assignment, predict the value on the right hand side to be assigned

Neural Model Architecture


- Underlying framework: sequence-to-sequence architecture

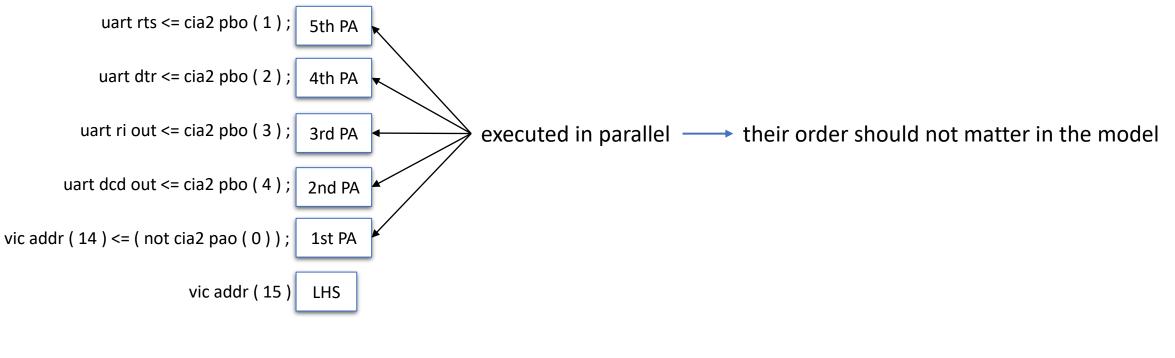
 Encodes a sequence into a deep representation, and predicts a target sequence
- Novel architectures to capture HDL-specific characteristics
 - 1. Multi-source architectures to encode more previous assignments context
 - 2. Utilizing the types of signals
 - 3. Ensembling multiple sequence-to-sequence models to capture the parallel nature of HDLs



Our Architecture (1/3)

• Multi-source architectures to encode more previous assignments context

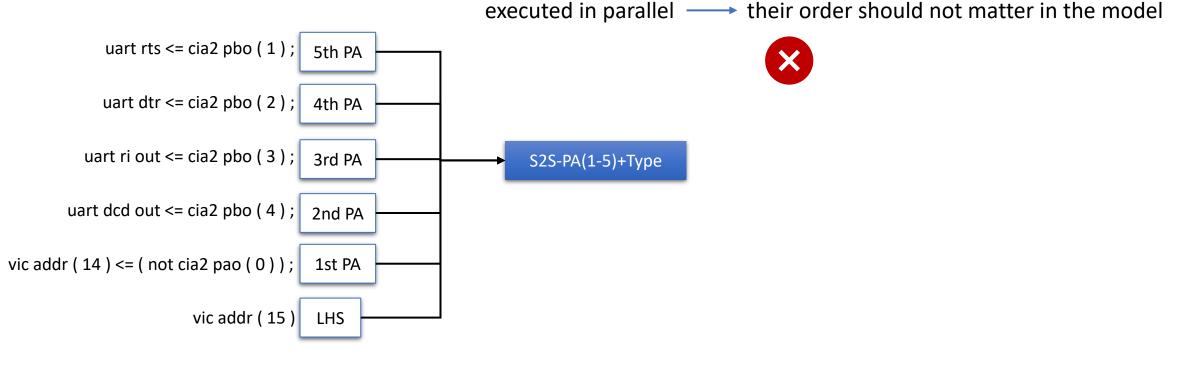
Our Architecture (2/3)



² inputs, without type: S2S+PA(1)

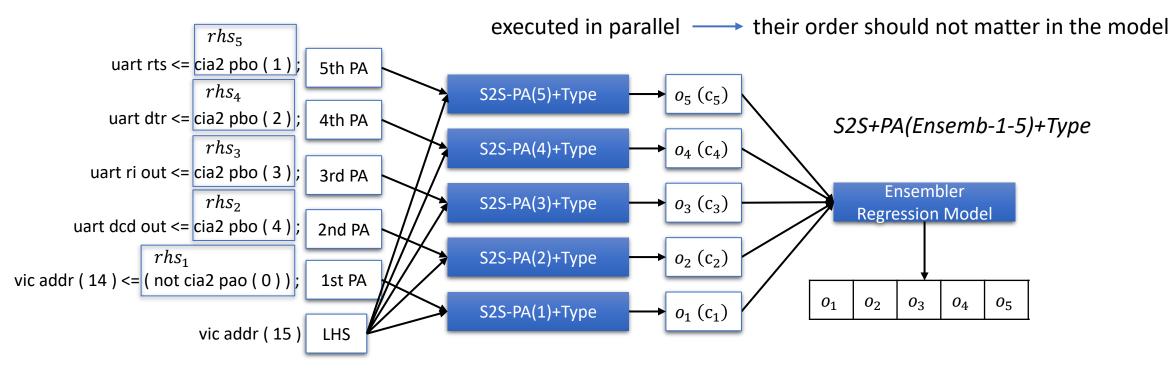
² inputs, with type: S2S+PA(1)+Type

Our Architecture (3/3)


• Ensembling multiple sequence-to-sequence models to capture the parallel nature of HDLs

expected RHS: (not cia2 pao (1))

Our Architecture (3/3)


• Ensembling multiple sequence-to-sequence models to capture the parallel nature of HDLs

expected RHS: (not cia2 pao (1))

Our Architecture (3/3)

• Ensembling multiple sequence-to-sequence models to capture the parallel nature of HDLs

expected RHS: (not cia2 pao (1))

Dataset

- Extract all concurrent assignments from our VHDL corpus
- Split to training, development, and testing sets with a ratio of 80%:10%:10%
 - 1. Random shuffle all files
 - 2. Take enough files to obtain ~10% assignments for the testing set
 - 3. Take enough files to obtain ~10% assignments for the development set
 - 4. Assignments from other files (~80%) go into the training set

Statistic	All	Training	Development	Testing
#Assignments	49,982	39,986	4,998	4,998
Avg. LHS length	4.10	4.11	4.06	4.10
Avg. RHS length	8.55	8.56	8.51	8.51

Evaluation: Baselines and Models

- Rule-based baseline
 - $\circ~$ Copy the RHS of the 1st PA
- Language model baseline
 - RNN language model using LHS + 1st PA as context: RNNLM+PA(1)
 - Not good at handling long context: *RNNLM+PA(1)* is better than *RNNLM+PA(1-5)*
- Sequence-to-sequence models
 - Base architecture: *S2S*
 - 2 inputs: S2S+PA(1)
 - 2 inputs with type: *S2S+PA(1)+Type*
 - 6 inputs with type: *S2S+PA(1-5)+Type*
 - Ensemble model: *S2S+PA(Ensemb-1-5)+Type*

Evaluation: Metrics

- Compute the similarity between the predicted RHS vs. human-written RHS for each data in testing set, and report the average scores
- Similarity measurements:

```
• xMatch: exactly match = 100%, otherwise = 0%
```

- Acc: subtoken level accuracy = $\frac{\operatorname{len}(\{i|pred[i]=tgt[i]\})}{\max(\operatorname{len}(pred),\operatorname{len}(tgt))}$
- BLEU: range 0-100, calculates the percentage of n-grams in the predicted RHS that also appear in human-written RHS, averaging across n ∈ {1,2,3,4} and using a brevity penalty to eliminate the impact of the number of subtokens predicted

Evaluation: Key Results (1/2)

Model	BLEU	Acc [%]	xMatch [%]
Rule-based Baseline	29.4	38.1	8.8
RNNLM+PA(1)	18.0	22.0	8.2
S2S+PA(Ensemb-1-5)+Type	37.3	48.0	19.1

 The best model is the model that ensembles multi-source sequence-to-sequence models for 5 previous assignments with utilizing types of signals

Evaluation: Key Results (2/2)

Model	BLEU	Acc [%]	xMatch [%]
S2S+PA(Ensemb-1-5)+Type	37.3	48.0	19.1
S2S+PA(1-5)+Type	24.4	28.2	11.4
S2S+PA(1)+Type	25.8	30.4	14.1
S2S+PA(1)	25.4	30.0	14.4
S2S	19.6	21.9	12.3

- Using more previous assignment context and type embedding improved the performance over the base architecture (S2S)
- Ensembling handles the previous assignment context more effectively than only using multi-source architecture

Conclusions

Corpora

- Mined hardware descriptions repositories corpora from GitHub
- 3 popular languages: VHDL, Verilog, SystemVerilog; 8.5M lines of code

Naturalness

- Conducted the first comparative evaluation of the naturalness of hardware descriptions by building language models and reporting standard cross entropy measures
- Compared the naturalness of hardware descriptions written in VHDL, Verilog, SystemVerilog against the naturalness of software written in Java

Assignment Completion Model

 Designed and implemented deep learning models for predicting the right hand side of concurrent assignments in VHDL

https://github.com/EngineeringSoftware/hdlp

Pengyu Nie <pynie@utexas.edu>