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ABSTRACT
Mining software repositories (MSR) has been shown effective for
extracting data used to improve various software engineering tasks,
including code completion, code repair, code search, and code sum-
marization. Despite a large body of work on MSR, researchers have
focused almost exclusively on repositories that contain code writ-
ten in imperative programming languages, such as Java and C/C++.
Unlike prior work, in this paper, we focus on mining publicly avail-
able hardware descriptions (HDs) written in hardware description
languages (HDLs), such as VHDL. HDLs have unique syntax and
semantics compared to popular imperative languages, and learning-
based tools available to hardware designers are well behind those
used in other application domains. We assembled large HD corpora
consisting of source code written in several HDLs and report on
their characteristics. Our language model evaluation reveals that
HDs possess a high level of naturalness similar to software written
in imperative languages. Further, by utilizing our corpora, we built
several deep learning models for automated code completion in
VHDL; our models take into account unique characteristics of HDLs,
including similarities of nearby concurrent signal assignment state-
ments, in-built concurrency, and the frequently used signal types.
These characteristics led to more effective neural models, achieving
a BLEU score of 37.3, an 8–14-point improvement over rule-based
and neural baselines.

CCS CONCEPTS
• Hardware → Hardware description languages and compi-
lation; • Software and its engineering → Software mainte-
nance tools.
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1 INTRODUCTION
Mining software repositories (MSR) has been an active area of re-
search for over a decade. Researchers and practitioners have been
mining various artifacts available in (or associated with) reposito-
ries, e.g., code, license files, images, natural language elements, pull
requests, open issues, and have shown that MSR can be effective for
extracting data that is valuable for numerous software engineering
tasks, e.g., [5, 9, 17, 24, 35].

Recently, the extracted data from software repositories was used
to show that source code is natural, i.e., it is repetitive and predictable.
The pioneering paper on the topic [17] found that the level of natu-
ralness in Java code is even higher than that of English, and built a
simple code completion tool based on an n-gram language model.
A follow-up work [44] revisited the original results and explored
naturalness of code written in several programming languages, in-
cluding C, C#, Java, Python, Ruby, and Scala. The naturalness of
source code has led to the advancement of powerful statistical mod-
els useful in a wide range of tasks, including code completion [27],
code repair [4], code search [56], and code summarization [26].
However, despite some great progress on MSR in general and the
naturalness of software in particular, researchers have focused almost
exclusively on general purpose (imperative) programming languages,
e.g., Java and C/C++ [2].

In this paper, we present the first work on mining hardware
descriptions (HDs)1 written in one of the three popular hardware
description languages (HDLs): VHDL, Verilog, SystemVerilog. HDLs
have unique syntax and semantics compared to popular imperative
languages, e.g., they are data-flow programming languages where
many statements are executed simultaneously. Moreover, HDs have
unique properties, e.g., most of the signals are logic bits or vectors
of logic bits, and the similarity of nearby statements is high.

We hope that our work will inspire more research on improv-
ing engineering practices and tools used by hardware designers, a
different target audience than developers using traditional impera-
tive programming languages. This improvement in development
practices and tools is very much needed; the state-of-the-art in
hardware description is well behind practices and tools used by
software engineers. For example, even the most advanced Inte-
grated Development Environment (IDE), Sigasi [48], is well behind
IDEs for Java in terms of adopting learning-based code completion
and code checking techniques. Thus, hardware designers need help
right now to speed up their development, enforce coding conven-
tions [25, 32, 47, 61], and ensure correctness of their HDs. We make
several contributions to start off the research in this direction.

First, wemine publicly available repositories onGitHub to extract
the most popular (in terms of the number of stars) repositories
that contain HDs for VHDL, Verilog, and SystemVerilog. We then

1Hardware descriptions == software written in hardware description languages; they
are also frequently referred to as hardware designs or hardware design models.
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analyze these repositories to extract various metrics of the code
that characterize the languages. The creation of this large corpus
of HDLs stands to motivate other researchers to study and improve
available HDs.

Second, we conduct a comparative evaluation of the naturalness
of HDs written in aforementioned languages against software writ-
ten in imperative languages by building language models over the
mined corpora and report standard cross entropy measures [17] on
the statistical regularity of HDs. Our results show that HDs have a
high level of naturalness similar to software written in imperative
languages like Java, which should motivate researchers and prac-
titioners to develop code automation techniques based on (deep)
learning for HDLs.

Finally, we develop the first learning-based models for HDLs uti-
lizing the extracted data.We design several deep learningmodels for
automatically completing the right hand side of a concurrent signal
assignment statement (concurrent assignment for short) in VHDL;
concurrent assignments are among the most common components
for data-flow and structural descriptions in HDs. Our models are
designed to exploit unique properties of HDs and HDLs, including
similarities of nearby concurrent assignments, in-build concurrency,
and a relatively small number of frequently used signal types. We re-
veal that these properties contribute to the performance of our most
advanced model, measured in terms of accuracy and BLEU [38],
which are metrics commonly used in the related literature [18].
In summary, we make the following key contributions:
★ We release a large corpus for learning over HDs, mined from

GitHub. This corpus can be used by researchers, practitioners,
and tool developers to improve engineering practices in this
important domain.

★ We perform the first study of the naturalness of HDs written
in three popular languages: VHDL, Verilog, SystemVerilog. By
training and testing statistical language models, we find that HDs
written in VHDL are more natural than software written in Java,
and HDs written in other HDLs also have a high level of natural
regularities in code.

★ We design and implement deep learning models for predicting
the right hand side of concurrent assignments in VHDL. We
extensively evaluate our models using 100 popular repositories.
Our best model achieves 48.0% accuracy and 37.3 BLEU, which
outperforms rule-based and neural baselines by 8–14 BLEU.

Our code and data is available on GitHub: https://github.com/
EngineeringSoftware/hdlp.

2 BACKGROUND
This section provides a brief background on hardware description
languages (HDLs) and introduces several VHDL [3] constructs via
an example. We focus on VHDL due to our familiarity with the
language. Because it is not feasible to describe all aspects of VHDL,
we focus on the constructs required in later sections.

Hardware designers use HDLs to write hardware descriptions
(HDs) that describe logic circuits on the Register Transfer Level
(RTL); RTL is a design abstraction of the flow of digital signals
between hardware registers. An HD is commonly tested and de-
bugged in an event-driven simulation program. Once the HD is

1 entity fpga64_sid_iec is

2 port(...

3 clk32 : in std_logic;

4 uart_txd : out std_logic;

5 uart_rts : out std_logic;

6 uart_dtr : out std_logic;

7 uart_ri_out : out std_logic;

8 uart_dcd_out: out std_logic; );

9 end fpga64_sid_iec;

10 architecture rtl of fpga64_sid_iec is ...

11 signal cia2_pao: unsigned(7 downto 0);

12 signal cia2_pbo: unsigned(7 downto 0);

13 signal vicAddr: unsigned(15 downto 0); ...

14 begin

15 -- setting local signals, etc., not shown due to space constraints

16 process(clk32)

17 begin

18 if rising_edge(clk32) then

19 if sysCycle = sysCycleDef'high then

20 sysCycle <= sysCycleDef'low;

21 elsif sysCycle = CYCLE_CPU6 then

22 sysCycle <= CYCLE_CPU8;

23 else

24 sysCycle <= sysCycleDef'succ(sysCycle);

25 end if;

26 end if;

27 end process;

28 iec_data_o <= cia2_pao(5);

29 iec_clk_o <= cia2_pao(4);

30 iec_atn_o <= cia2_pao(3);

31 uart_txd <= cia2_pao(2);

32 uart_rts <= cia2_pbo(1);

33 uart_dtr <= cia2_pbo(2);

34 uart_ri_out <= cia2_pbo(3);

35 uart_dcd_out <= cia2_pbo(4);

36 vicAddr(14) <= (not cia2_pao(0));

37 vicAddr(15) <= (not cia2_pao(1));

38 end architecture;

concurrent assignments

Figure 1: An example VHDL code snippet from MiSTer-
devel/C64_MiSTer repository, which is a part of our corpus.

completed, it is processed by a synthesis program and translated
onto a programmable logic device, e.g., FPGA.

We show an example of an HDwritten in VHDL in Figure 1. (Syn-
tax of VHDL is the closest to the Ada programming language.) We
extracted this example from MiSTer-devel/C64_MiSTer repository,
which aims to recreate Commodore 64 using modern hardware [33].
This project is publicly available on GitHub (SHA: 0efb9e1b) [34]
and is part of our corpus that is used in later sections.

In VHDL, each HD consists of one or more modules; only one
module is shown in Figure 1. For each module, there is code that
describes its interface (i.e., what comes into the module and comes
out of the module) and behavior (i.e., how values on the output
depend on the inputs).

An interface starts with the keyword entity (line 1) followed
by the name of the module (fpga64_sid_iec); the interface ends
with the keyword end followed by that module name (line 9). An
interface defines ports (lines 2–8) available on the module. Each
port has a name (e.g., uart_txd), the direction that information is
allowed to flow through the port (in, out, or inout), and the type
of the port (e.g., std_logic) that defines the set of values that can
flow through the port.

A behavior starts with the keyword architecture (line 10) fol-
lowed by the name for the architecture (rtl), the keyword of, and
then the name of the module for which the behavior is specified;
a sequence of keywords end architecture (line 38) closes the

https://github.com/EngineeringSoftware/hdlp
https://github.com/EngineeringSoftware/hdlp
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behavior section. At the beginning of each architecture (lines 11–
13), a designer can define an arbitrary number of local signals
that can be helpful when defining the behavior; each signal defi-
nition starts with keyword signal, followed by the signal’s name
(e.g., cia2_pao) and type (e.g., unsigned(7 downto 0), which is
an unsigned 8 bit value). Between begin and end architecture
(lines 15–38), there can be an arbitrary number of concurrent pro-
cesses. In our example, there is one explicit process (lines 16–27).
This process is executed whenever the input clk32 signal changes.
The statements within the process (lines 18–26) are executed se-
quentially. The process in our example is followed by several con-
current assignments (lines 28–37). Each concurrent assignment is
an implicit process (i.e., w/o the process keyword) with a single
statement. All processes execute in parallel. Each concurrent assign-
ment is executed whenever any of the signals on its right hand
side is changed. For example, on line 28, whenever cia2_pao is
changed, the concurrent assignment is executed and a new value
for iec_data_o is computed.

VHDL is strongly typed. Unlike VHDL, Verilog is a weakly-typed
language and its syntax is inspired by C and Fortran. However, the
base structure and language constructs available in Verilog are sim-
ilar to those in VHDL. It is commonly accepted that VHDL is more
verbose than Verilog. SystemVerilog was initially introduced as an
extension of Verilog with object-oriented features and the goal to
improve verification of HDs; the most common usage of SystemVer-
ilog is to write code for verifying HDs written in VHDL and Verilog.
(We do not show code snippets for Verilog and SystemVerilog as
that would take too much space.)

In Section 3, we mine GitHub to find and characterize available
HDs written in VHDL, Verilog, and SystemVerilog. We then, in
Section 4, study the naturalness of HDs written in HDLs, which
have substantially different syntax and semantics than imperative
programming languages studied in the past. Finally, in Section 5 we
develop deep learning models to predict the right hand side of con-
current assignments in VHDL, e.g., on line 30 in Figure 1 we want
to predict cia2_pao(3). We focus on VHDL but our models are gen-
eralizable to other HDLs. Our learning-based models are designed
based on our intuition that (1) nearby assignment statements are
similar and provide important local context, (2) types of ports and
local signals provide important global context, and (3) the order of
concurrent assignments, based on the parallel execution semantics,
is irrelevant. We will show that these observations contribute to
the performance of our models.

3 HARDWARE DESCRIPTION CORPORA
In this section, we describe the procedure that we followed to assem-
ble the corpora of HDs; these HDs are used in later sections to study
naturalness (Section 4) and train/evaluate models for completing
the right hand side of concurrent assignments (Section 5). Moreover,
we provide statistics for several features unique to HDLs in the
assembled corpora, which could motivate other research directions.
In addition to the HD corpora, we obtained two Java corpora in
order to compare the naturalness of HDs with that of Java code;
we followed prior work on software naturalness to obtain the Java
corpora. We obtained all repositories from GitHub, which is the
most popular repository hosting service. We downloaded all the
repositories on Oct 4, 2019.

HD Corpora. First, we created a corpus for each HDL using the
top 100 repositories from GitHub, excluding forked repositories,
and ranked by the number of stars (we used the number of stars as
a proxy for projects’ popularity following recent literature [20, 36]).
The number of stars for the VHDL repositories in our corpus is,
on average, 129.4 and ranges from 17 to 979; the number of stars
for the Verilog repositories in our corpus is, on average, 206.8 and
ranges from 61 to 1217; the number of stars for the SystemVerilog
repositories in our corpus is, on average, 73.2 and ranges from 28
to 746. Second, we processed all the files in all the repositories to
find the set of files that can be parsed by the open-source parsers
generated using the ANTLR parser generator [39]. We observed
that some files that have a correct file extension (e.g., .vhd) are
not parsable because they do not actually contain valid code but
rather binary data (e.g., RSA keys and data blocks), for example,
the file blk_mem_gen_v8_4_vhsyn_rfs.vhd from Xilinx/PYNQ-DL
project or they use latest language standards not supported by
available tools. We also filtered out duplicate files. Duplicate files
are present in repositories with imperative languages too, and they
can introduce noise in experimental results [1].
Java Corpora. In order to compare our findings with prior work
that studied Java repositories, we use two Java corpora: (1) Java
(Naturalness), which contains exactly the same repositories and
revisions as Hindle et al. [17]’s study, and (2) Java (Popular), which
contains the most popular 10 repositories at the time of our experi-
ments. We used only 10 repositories in the Java (Popular) corpus in
order to match the number of repositories used in the Java (Natu-
ralness) corpus, and to remain close to the number of tokens in the
HDLs corpora. We used the same procedure as for HDLs to clean
duplicate files from the Java corpora; we used Eclipse JDT Core
version 3.12.2 [11] to process Java files.
Statistics. Table 1 shows the statistics of the HD and Java corpora.
The first column shows the corpus name, and the second column
shows the number of repositories in each corpus. Columns 3-5
show the number of parsable files, the percentage of duplicate files,
and the number of unique files. Columns 6-8 show the statistics
of the unique files of each corpus, including lines of code (LOC),
total number of tokens, and vocabulary size (i.e., number of unique
tokens). We also use box plots to show the distribution of lines of
code for the files in each corpus in Figure 2a, the distribution of
number of tokens in Figure 2b, and the distribution of vocabulary
size in Figure 2c.

From the table and figures, we can observe that HDs written in
VHDL are more verbose than Verilog, as commonly accepted in the
community, although the difference is not statistically significant2.
Also, we can see that code (per file) written in SystemVerilog is
somewhat shorter—though not significantly—than code written in
VHDL and Verilog, because SystemVerilog is commonly used for
writing test benches to verify HDs. Finally, we can observe that the
number of total and unique tokens, taking into account the number
of repositories, is substantially higher in Java repositories than in
HDL repositories, and the number of tokens in SystemVerilog is
significantly smaller than that of VHDL and Verilog.

2Under significance level 𝑝 < 0.05 using the bootstrap method by Berg-Kirkpatrick et
al. [6]. The same method applies to other significance tests in this paper.
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Table 1: Statistics of Our HD Corpora and Java Corpora: Number of Repositories, Number of Parsable Files, Percentage of
Duplicate Files, Number of Unique Files, Lines of Code (LOC), Number of Tokens, Vocabulary Size.

Corpus #Repos
Files

LOC #Tokens Vocab. Size
#Parsable %Duplicate #Unique

VHDL 100 13,554 15.5% 11,459 4,759,308 14,572,639 227,117
Verilog 100 7,219 4.8% 6,869 3,433,764 8,238,560 273,893
SystemVerilog 100 2,021 6.5% 1,890 317,886 925,656 28,693
Java (Popular) 10 32,294 3.2% 31,264 6,672,160 23,502,694 387,812
Java (Naturalness) 10 9,886 2.6% 9,630 2,457,854 6,926,953 147,682
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Figure 2: Lines of code (LOC) per file and number of tokens per file distributions in our HD corpora and Java corpora.

Table 2: Statistics of HDL Code Elements in Our Corpora: Number of Entities (Modules), Number of Functions, Number of
Processes (“always” Blocks), Number of Input Ports, Number of Output Ports, and Number of Inout Ports. “Avg” Columns are
the Numbers Per File and “Sum” Columns are the Total Number for All Files from All Repositories.

Corpus
#Entity/Module #Function #Process/Always #Input Port #Output Port #Inout Port
Avg Sum Avg Sum Avg Sum Avg Sum Avg Sum Avg Sum

VHDL 1.06 12,191 0.70 7,981 2.17 24,824 12.65 144,997 9.08 104,089 0.46 5,248
Verilog 1.24 8,511 0.20 1,399 3.22 22,123 21.66 148,806 27.43 188,395 1.13 7,739
SystemVerilog 0.97 1,837 0.28 531 1.26 2,381 4.46 8,425 2.54 4,792 0.06 116

Table 2 shows the statistics of the numbers of several HDL code
elements in our corpora. The first column shows the corpus name.
Columns 2-3 show the number of entities (in VHDL) or modules (in
Verilog and SystemVerilog) per file (Avg) and total in each corpus
(Sum). Note that number of modules per file for SystemVerilog could
be ≤ 1 because some files may consist of only program blocks but
not modules. Columns 4-5 show the number of functions. Columns
6-7 show the number of processes (in VHDL) or “always” blocks
(in Verilog and SystemVerilog). Finally, columns 8-13 show the
number of input ports, output ports and inout ports. Although we
do not report the details about each of these code elements, we find
that a large number of them is available in popular open-source
repositories, which can be exploited by various learning-based
techniques to build better software tools for HDLs.

4 NATURALNESS OF HDS
This section presents an assessment of the naturalness of HDs, in
comparison with software written in Java, using our corpora. To
make sure the results are compatible with existing literature, we
follow prior work on the naturalness of software [17, 44] and use
n-gram language models for this analysis. We reveal that HDLs
have comparable levels of naturalness to Java software.

4.1 Methodology
Language Modeling and Naturalness. At a high level, language
models are generative models that capture statistical regularities in
terms of style and vocabulary in a corpus. Their learned parameters
in turn can be used to determine whether a document D fits in the
corpus, by estimating the probability 𝑃 (D) of generating D under
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Figure 3: Line plots of the cross entropy measurements on our HD and Java corpora.

a trained model. Following [17, 44], we use the document’s cross
entropy H(D) as a fitness measure (also called “SelfCrossEntropy”
inMusfiqur et al. [44]); cross entropy is the power term of perplexity,
which is the standard measure for language model evaluation [22]:

H(D) = − 1
len(D) log2 𝑃 (D) ppl(D) = 2H(D)

where len(D) is the number of tokens inD. These are information-
theoretic measures that capture the length-normalized inverse prob-
ability of D in the corpus, thus lower values entail more “fit”; note
that D should be a test document that does not appear in the train-
ing set of the language model. As cross entropy and perplexity
are monotonically correlated by definition, we report only cross
entropy as in prior work [17, 44].

The concept of “naturalness” captures predictability and repet-
itiveness, and is an aggregated version of cross entropy over the
whole corpus. Namely, we iteratively partition the corpus into train-
ing and testing sets; the lower the cross entropy over all partitions,
the more “natural” the corpus is. To obtain the aggregated mea-
sures, we perform 10-fold validation through the following steps,
reimplementing Hindle et al. [17]:
(1) Randomly partition the corpus into 10 equally sized folds; this

is done by first shuffling the files in the corpus, then splitting
into 10 folds with equal number of lines of code.

(2) Train a language model on 9 folds and apply it on the remaining
fold; repeat this step for each fold.

(3) Report the average cross entropy as a measurement of natural-
ness for the corpus.

N-Gram Language Model. The probability of document D is
modeled by the joint probability of its token sequence:

𝑃 (D) = 𝑃 (𝑤𝑚
1 ) =

𝑚∏
𝑖=1

𝑃 (𝑤𝑖 |𝑤𝑖−1
1 )

In an n-gram language model, the Markov assumption is applied
for the conditional probabilities for a given 𝑛:

𝑃 (𝑤𝑖 |𝑤𝑖−1
1 ) ≈ 𝑃 (𝑤𝑖 |𝑤𝑖−1

𝑖−𝑛+1)

Therefore, the model directly counts the frequencies of token se-
quences of lengths 𝑛 and 𝑛 − 1. Since our goal in this section is a
comparative analysis of naturalness rather than building the best
language model, using n-grams here makes sure that our results are
comparable to prior work [14, 17]; in addition, compared to neural
language models, n-gram models are transparent and straightfor-
ward in their probability estimates. This is particularly appealing
given a large vocabulary, and it is also easy to vary the length of
the sequence 𝑛, an analysis that led to important conclusions of
source code naturalness which we also show below.

We used Software Language Processing library (SLP) [14, 49] to
build the n-gram language model. The library had been used for
building language models for imperative languages such as Java,
and we modified it to accept HDLs. To handle zero probabilities of
n-grams, we used Jelinek-Mercer smoothing as Hellendoorn and
Devanbu [14] found it to be the most appropriate for source code.
Repository Level and Language Level Naturalness. Hindle et
al. [17] measured naturalness on the repository level: they consid-
ered each Java repository as a (mini) corpus, computed naturalness
measures on each repository, and reported the average among all
repositories as the naturalness for Java software. In contrast, Mus-
fiqur et al. [44] reported language level naturalness: they considered
all repositories of one programming language as a single corpus.
Our work reports naturalness on both levels, to gain insights into
regularities in each language as a whole, while accounting for vari-
abilities across different repositories written in the same HDL.

4.2 Analysis
Figure 3 shows the line plots of cross entropy for our HD corpora
and Java corpora, with 3a and 3b showing the repository and lan-
guage level measures respectively. In each line plot, the x-axis is
the value of 𝑛 for the n-gram language model, and the y-axis is the
cross entropy, and each line corresponds to one corpus.

For all the corpora, the cross entropy monotonically drops as
𝑛 increases, which indicates that a higher order n-gram language
model (larger 𝑛) is better at capturing statistical regularity in both
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HDLs and Java. The decline of cross entropy saturates around 4-
grams for HDs, a similar finding as in Hindle et al. [17] for Java
software. At the repository level, code written in all HDLs show
lower cross entropy values than Java software at lower 𝑛. With
larger 𝑛, VHDL code has the lowest cross entropy values among
HDLs, similar to that of Java (Popular) corpus, while code written
in Verilog and SystemVerilog have similar cross entropy values
compared to that of Java (Naturalness) corpus. At the language
level, VHDL code has the lowest cross entropy compared to other
language corpora. SystemVerilog code shows lower cross entropy
than Verilog code, with values similar to the two Java corpora.
However, Verilog code has more regularities within repositories
than at the language level. Our results indicate that Verilog code is
more diverse across repositories compared to VHDL code.

We verify whether the differences between the cross entropy
of the languages are statistically significant or not, by performing
Wilcoxon rank-sum tests [59] under significance level 𝑝 < 0.05
on each pair of the languages at both repository and language
level when n = 10. At the repository level, the cross entropy differ-
ences between ⟨VHDL, Java (Popular)⟩ and ⟨SystemVerilog, Java
(Naturalness)⟩ pairs—and only these pairs—are not statistical sig-
nificant. At the language level, the cross entropy differences be-
tween ⟨Verilog, SystemVerilog⟩, ⟨SystemVerilog, Java (Popular)⟩,
and ⟨SystemVerilog, Java (Naturalness)⟩ pairs—and only these pairs—
are not statistical significant.

From these observations, we conclude that similar to software
written in imperative languages, HDs also show clear properties of
naturalness, i.e., predictability and repetitiveness, as captured by
n-gram language models (with 𝑛 ≥ 4). VHDL code has the highest
naturalness among the HDLs we study, and is higher than that of
Java software at the repository level. This is due to VHDL being
more verbose thus more repetitive. The findings for Verilog may be
attributed to a larger vocabulary used in a smaller corpus compared
to VHDL (Table 1).

The cross entropy of Java (Naturalness) at the repository level
matches that reported in Hindle et al. [17], while at the language
level this corpus has higher cross entropy values. Compared to that,
the Java (Popular) corpus which represents recent and trending
repositories has lower cross entropy values at both repository and
language levels.

5 ASSIGNMENT COMPLETION FOR VHDL
The high level of naturalness of HDs that we revealed over our
large corpora entails that many learning-based code automation
techniques can be built to support hardware designers, including
automated code completion, code search, etc. In this section, we
start off the research in this direction by designing and implement-
ing the first technique for an automated code completion task in
VHDL. Our technique leverages unique semantics of VHDL.

5.1 Task
We tackle code completion in concurrent signal assignment state-
ments (concurrent assignments for short). Namely, given a left hand
side of a concurrent assignment, we predict the value on the right
hand side to be assigned. Example (line 37 in Figure 1):

vicAddr(15)<= ? ;

Our task is inspired by prior work on code synthesis that looked at
completing the right-hand side for imperative languages [13, 31].
In a personal communication, we also confirmed with a Sigasi IDE
developer the relevance of the task. We focus on VHDL because
of its high level of naturalness among HDLs we have studied, the
abundance of data on GitHub, and our familiarity with the language.

A concurrent assignment can be divided into its left hand side
(LHS) and right hand side (RHS). The LHS consists of a signal name
or an array indexing expression which specifies the signal to be
assigned to. The RHS consists of some operations over signals and
literals, which is to be the new value of the LHS. Our task is to design
an assignment completion technique that automatically completes
RHS code fragments conditioned on the LHS and other context.

5.2 Neural Architecture
The underlying framework of our models is a sequence-to-sequence
architecture that encodes a sequence into a deep representation,
and predicts a target sequence. Originally used in natural language
generation such as machine translation [52], this type of model
has widely been used in language–code tasks such as code sum-
marization [21, 26], comment generation [18, 37], and code genera-
tion [29, 57].

In contrast to traditional approaches which usually consider lit-
tle context beyond the tokens that are to be encoded with a single
encoder, the unique aspects (e.g., concurrent assignments) of HDLs
motivate us to design a richer, context-driven model. Namely, our
model utilizes the context in the source code before the concur-
rent assignment under consideration (assuming that the code is
written in top-to-bottom order); this setting mimics how in prac-
tice developers would use a code completion tool. For example,
when predicting the RHS of the concurrent assignment at line 37
in Figure 1, our model can utilize all the previous context in the file,
including the previous concurrent assignments at lines 28–36, and
the signal type declarations at lines 2–8 and lines 11–13.

Below, we first introduce our base sequence-to-sequence model,
then describe our extensions that capture HDL-specific charac-
teristics: (1) a multi-source architecture, i.e., having multiple en-
coders rather than one; (2) utilizing type embeddings; and (3) en-
sembling multiple sequence-to-sequence models. Figure 4 depicts
the sequence-to-sequence model with the extensions (1) and (2).
Base Architecture. Sequence-to-sequence models are designed
specifically for transduction tasks, i.e., given an input token se-
quence x = 𝑥1, 𝑥2, ..., 𝑥𝑚 , the model predicts a target token sequence
y = 𝑦1, 𝑦2, ..., 𝑦𝑛 . This is achieved by an encoder—usually a recur-
rent neural network (RNN)—which encodes the input into a deep
semantic vector representation z = encoder(x), and a decoder—
another RNN—predicts the target y|x ∼ decoder(z). The entire
architecture is trained end-to-end using back-propagation through
time, maximizing the conditional log-likelihood

log 𝑝 (y|x) =
𝑛∑
𝑖=1

log𝑝 (𝑦𝑖 |y𝑖−11 , z)

over the training set. The output is predicted via a decoding
algorithm, such as beam search, rather than predicting tokens one
at a time as in languagemodels. Ourwork uses bidirectional GRU [7]
(an advanced RNN often used for sequence data [26, 62]) for both
the encoder and the decoder.
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Figure 4: Neural architecture for our assignmentRHSpredic-
tion model, which is a multi-source sequence-to-sequence
model with type embedding concatenated with sub-token
embedding. The left part shows several encoders for LHS or
previous concurrent assignments; each encoder is a bidirec-
tional GRU and the input at each time step is concatenation
of the sub-token embedding and the type embedding (slv
= 𝑠𝑡𝑑_𝑙𝑜𝑔𝑖𝑐_𝑣𝑒𝑐𝑡𝑜𝑟 ). The right part shows the decoder which
predicts the sub-tokens in the output sequence (RHS). Atten-
tion mechanism is not shown in this figure to avoid unnec-
essary complexity but described in the main text.

To improve the model’s ability in capturing long-range depen-
dencies among its tokens, we incorporate an attention mechanism
using the global attention model [30] which is commonly used with
sequence-to-sequence models. When predicting a target token 𝑦𝑖 ,
the attention mechanism informs the model how much information
should be pulled from each input token 𝑥 𝑗 , 𝑗 ∈ {1, ..,𝑚}, which
is then aggregated via a learned weighted sum over the encoder
representation z constituting another layer over the decoder.
Sub-Tokenization. In VHDL, identifier names (e.g., signal names
and function names) are usually composed of multiple sub-tokens
separated by underscores (_). CamelCase is rarely used because
VHDL is case-insensitive. We split the LHS and previous concurrent
assignments into sub-tokens, normalize them to lower case, and use
the obtained sequence of sub-tokens as the inputs to the models.
Sub-tokenization helps the model to capture more semantics in the
identifier names and to generalize across different repositories.
Multi-Source Sequence-to-Sequence Model. As described in
Section 2, one of the characteristics of HDLs that is very differ-
ent from imperative languages is that the processes—including
concurrent assignments—are executed in parallel, despite the fact
that they are still presented sequentially in a text editor. In addition,
concurrent assignments that are similar to each other are often
written close together. With this in mind, we design a multi-source
architecture such that prior context—and the fact that concurrent
assignments can be freely shuffled—is taken into account.

We denote each input sequence with a superscript, i.e., x1, ..., x𝑘
for 𝑘 sequences. The multi-source encoder is formulated as:

z𝑗 =encoder𝑗 (x𝑗 ),∀𝑗 ∈ {1, ..., 𝑘}

z =merge(z1, ..., z𝑘 )

Frequency

std_logic_vector

std_logic

<T>

in std_logic_vector

out std_logic

out std_logic_vector

in std_logic

unsigned

std_ulogic

boolean

signed

inout std_logic_vector

inout std_logic

out startaddr_array_type

T
y
p
e

44377

27006

17627

9942

9744

6705

6434

1381

1164

547

447

400

297

179

Figure 5: Histogram of VHDL signal types in our dataset.
Each bar represents a type that we use for the type embed-
ding and its value is the frequency of that type.

The merge function consists of a fully connected layer followed by
a Leaky ReLU regularization. The input sequences are concatenated
for the attention mechanism in the decoder.

In our preliminary study, the closest 5 previous concurrent as-
signments showed the most similar context 70% of the times (mea-
sured by Jaccard similarity among up-to 200 previous concurrent
assignments). Thus we experiment with using 1–5 previous con-
current assignments. This leads to 2–6 encoders (one for LHS and
others for previous concurrent assignments).
Type Embedding. Clearly, the expressions on the RHS have to
match the type of the signals on the LHS. Thus, we condition on
type information in the encoder(s) such that the model learns what
expressions would be appropriate for the type of the LHS3. There-
fore, in addition to the local context in LHS and previous concurrent
assignments, we utilize the types of signals as global context as they
are extracted from the port and local signal declarations at the
beginning of entity/architecture definitions. This idea aligns with
the recent work that uses types for code completion in imperative
languages [27, 53].

There are many possible types in VHDL, but only few of them are
frequently used. To reduce sparsity and improve the generalizability
of the model, we focus on 13 types that are most frequently used in
concurrent assignments. We replace all other types with a special
token ⟨T⟩. Figure 5 shows the histogram of the signal types, where
each bar represents one signal type or ⟨T⟩, and its value shows the
frequency of the type in our dataset.

In our model, types are represented as a one-hot 14-bit vector,
where each bit represents one of the 13 plus ⟨T⟩. We concatenate
this type embedding to each sub-token of the LHS and previous
concurrent assignments. If the sub-token is a part of a signal, the
respective bit in the type embedding corresponding to the signal
type is set to one; otherwise the type embedding is a zero vector.
Ensembling. Our preliminary experiments with the multi-source
sequence-to-sequence models revealed that utilizing different pre-
vious statements, e.g., LHS + 1st previous concurrent assignment,
LHS + 2nd previous concurrent assignment, etc., led to comple-
mentary model behavior. In particular, they make better/worse
predictions for different portions of the development set of the
dataset, and comparable performance on the entire development

3An alternative approach would be to perform an extensive static analysis and ensure
that our model never suggests RHS with an incorrect type, but we wanted to focus on
an end-to-end neural architecture in this work.
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Table 3: Statistics of Our Collected Assignments Dataset.

Statistic All Train Dev Test

#Assignments 49,982 39,986 4,998 4,998
Avg. LHS length 4.10 4.11 4.06 4.10
Avg. RHS length 8.55 8.56 8.51 8.51

set. Furthermore, we also observed the RHS of the current concur-
rent assignment can be frequently the same as the RHS of a previous
concurrent assignment, especially when the LHS of the two con-
current assignments are similar. Thus the rule-based models that
copy RHS from 1st-5th concurrent assignments could complement
the aforementioned sequence-to-sequence models.

Because of the parallelism of HDLs, the order in which previ-
ous concurrent assignments are encoded does not matter. Thus,
we ensemble these sequence-to-sequence and rule-based models
to leverage their complementary prediction powers: given a set
of inputs, we use all the models to predict the output sequence
individually, which gives us a confidence score from each sequence-
to-sequence model. We train a regression model, using the data
from development set, that assigns a score on each prediction. The
input features include the similarity of each prediction to the RHS of
each concurrent assignment from 1st-5th concurrent assignments,
the similarity of the LHS of current concurrent assignment with
the LHS of each concurrent assignment from 1st-5th concurrent as-
signments, and the confidence scores of each sequence-to-sequence
model. The similarity of two sequences of sub-tokens is measured
as one minus the Jaccard distance between the sets of their bag of
sub-tokens. We then rerank the predictions and select the one with
the highest score as predicted by the regression model.

5.3 Data
We extracted all concurrent assignments from our VHDL corpus.
We extracted each assignment’s LHS and RHS and the type decla-
rations in each entity/architecture, and performed post-processing
to obtain the type for each signal in the concurrent assignments.
Table 3 shows the statistics of our collected data. We collected
49,982 concurrent assignments (across files) in total, where LHS
has 4.10 sub-tokens on average and RHS has 8.55 sub-tokens on
average. Note that 92.5% and 94.9% of LHS and RHS sequences in
our dataset have lengths within the range of one standard deviation.
This means that long LHS and RHS sequences are rare. We observed
that all long RHS sequences contain a number of logic operators.

To obtain the training, development, and testing sets, we ran-
domly shuffle the list of all files and then take enough files to obtain
∼10% of assignments for the testing set and ∼10% of assignments
for the development set; assignments from other files (∼80%) go
into the training set. Duplicates that contain same assignment and
same context are removed.

5.4 Baselines, Models, and Training Details
Rule-Based Baseline. We compare to a baseline model which
outputs the RHS of the 1st previous concurrent assignment, or an
empty sequence if there is no previous concurrent assignment.
LanguageModel Baseline. This model utilizes the inputs as exist-
ing tokens {𝑡1, ..., 𝑡𝑚}, and repeatedly predicts the next token using

the language model 𝐿𝑀 as 𝑡𝑖+1 = 𝐿𝑀 (𝑡1, ..., 𝑡𝑖 ), until the predicted
token is the end-of-statement (i.e., a semicolon “;”). The model
outputs all the predicted tokens (except end-of-statement) as the
prediction for RHS.

We use RNN language model because prior work [45, 58] showed
its power on code completion tasks. We use three variants: RNNLM
is the RNN language model trained with the concurrent assignment
(LHS + RHS) sentences; in RNNLM+PA(1), each sentence is a con-
current assignment with its 1st previous concurrent assignment; in
RNNLM+PA(1-5), each sentence is a concurrent assignment with its
1st-5th previous concurrent assignments. For example, the sentence
extracted from the concurrent assignment on line 37 in Figure 1 for
RNNLM is

vicAddr(15)<= (not cia2_pao(1));

the sentence for the same assignment for RNNLM+PA(1) is
vicAddr(14)<= (not cia2_pao(0));

vicAddr(15)<= (not cia2_pao(1));

and for RNNLM+PA(1-5) is
uart_rts <= cia2_pbo(1); uart_dtr <= cia2_pbo(2);

uart_ri_out <= cia2_pbo(3); uart_dcd_out <= cia2_pbo(4);

vicAddr(14)<= (not cia2_pao(0));

vicAddr(15)<= (not cia2_pao(1));

We also experimented with n-gram language model for complete-
ness. Similar to RNN language model, we use three variants for
n-gram language model: 10gramLM is trained with the concurrent
assignment (LHS + RHS) sentences; in 10gramLM+PA(1), each sen-
tence is a concurrent assignment with its 1st previous concurrent
assignment; in 10gramLM+PA(1-5), each sentence is a concurrent
assignment with its 1st-5th previous concurrent assignments.
Sequence-to-Sequence Models. The S2S model is the sequence-
to-sequence model with only LHS as input. S2S+PA(1) utilizes the
1st previous concurrent assignment as additional input, using multi-
source architecture. S2S+PA(1)+Type adds type embedding based
on S2S+PA(1). S2S+PA(1-k)+Type utilizes the 1st-𝑘th previous con-
current assignments (e.g., S2S+PA(1-4)+Type utilizes 1st-4th previ-
ous concurrent assignments), using the multi-source architecture
with type embedding. S2S+PA(Ensemb-1-5)+Type utilizes 1st-5th
previous concurrent assignments by ensembling models and also
uses type embedding. S2S+PA(Concat-1-5)+Type uses only the basic
sequence-to-sequence architecture and utilizes the 1st-5th previous
assignments by concatenating them with the LHS as one input
sequence, and it also uses type embedding. All the sequence-to-
sequence models have attention mechanism enabled.
Hyper-Parameters. We set hyper-parameters of all neural mod-
els by tuning on the development set. For sequence-to-sequence
models, both encoder and decoder bidirectional GRU have 2 lay-
ers and hidden state dimensions of 512; the sub-token embedding
dimension is 512, randomly initialized. We limit the lengths of in-
put sub-tokens sequences to be at most 200. We train each model
with batch size 32 for at most 60,000 steps (one batch per step),
and use an early stop mechanism which stops the training if the
validation loss does not improve for the subsequent 10 checkpoints
(one checkpoint every 75 steps). During training time, we train
the sequence-to-sequence model with teacher forcing [60]; during
inference time, the model performs beam search with beam size 5.
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Table 4: BLEU, Accuracy (Acc), and Exact-Match Accuracy
(xMatch) Scores of Assignment Completion Models. All Im-
provements are Statistically Significant.

Model BLEU Acc [%] xMatch [%]

Rule-based Baseline 29.4 38.1 8.8
RNNLM+PA(1) 18.0 22.0 8.2
S2S+PA(Ensemb-1-5)+Type 37.3 48.0 19.1

Table 5: BLEU, Accuracy (Acc), and Exact-Match Accuracy
(xMatch) Scores of the RNN Language Model Variants.

Model BLEU Acc [%] xMatch [%]

RNNLM 5.9 7.3 3.5
RNNLM+PA(1) 18.0 22.0 8.2
RNNLM+PA(1-5) 12.3 14.9 6.2

The RNN language models have the same hyper-parameters except
that they use single-directional GRU. Our models are implemented
using Pytorch [41] and OpenNMT [23].

5.5 Results
Evaluation Metrics. We use three automatic metrics to evaluate
our models:
• BLEU: originally proposed for Machine Translation [38], BLEU
is now widely used in language–code tasks [18]. This metric
calculates the percentage of n-grams in the predicted output
that also appear in human-written RHS, averaging across 𝑛 ∈
{1, 2, 3, 4} and using a brevity penalty to eliminate the impact
of the number of tokens predicted. The range of values is 0–
100. Following settings from code-related tasks, e.g., [18], we use
sentence-level BLEU implementation in NLTK library [55] with
the smoothing method proposed by Lin and Och [28].

• Accuracy (Acc): we report the accuracy of sub-tokens, averaged
across the testing set. The accuracy for each concurrent assign-
ment is calculated using the following formula:

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
len({𝑖 | 𝑝𝑟𝑒𝑑 [𝑖] = 𝑡𝑔𝑡 [𝑖]})
max(len(𝑝𝑟𝑒𝑑), len(𝑡𝑔𝑡))

where 𝑝𝑟𝑒𝑑 is the sequence of sub-tokens in the predicted RHS,
𝑡𝑔𝑡 is the sequence of sub-tokens in the human-written RHS, and
len function calculates the length of a sequence or size of a set.

• Exact-match accuracy (xMatch): we also report the accuracy in
statement-level, i.e., the number of predicted RHS that exactly
match the human-written RHS divided by total number of con-
current assignment across the testing set.

We perform statistical significance testing to compare the metrics
between models under significance level 𝑝 < 0.05 using the boot-
strapping method [6].
Quantitative Results. Table 4 compares the performance of the
baselines and our best model evaluated on the testing set. We ran
each model 3 times and show the averaged metrics; each time we
use a different random seed for initializing the model as well as for
splitting the training/development/testing sets [12]. The best model
is S2S+PA(Ensemb-1-5)+Type with 37.3 BLEU, 48.0% accuracy, and

Table 6: BLEU, Accuracy (Acc), and Exact-Match Accuracy
(xMatch) Scores of N-gram Language Modeling Based As-
signment Completion Models.

Model BLEU Acc [%] xMatch [%]

10gramLM 14.5 16.4 10.4
10gramLM+PA(1) 17.8 20.0 13.5
10gramLM+PA(1-5) 10.6 10.6 5.6

Table 7: Ablation Study. The Best Scores are in Bold Text and
Statistically Significantly Outperform All Others.

Model BLEU Acc [%] xMatch [%]

S2S+PA(Ensemb-1-5)+Type 37.3 48.0 19.1

S2S+PA(1-5)+Type 24.4 28.2 11.4
S2S+PA(1-4)+Type 24.7 29.0 11.6
S2S+PA(1-3)+Type 26.1 30.9 13.4
S2S+PA(1-2)+Type 25.0 29.6 13.1
S2S+PA(1)+Type 25.8 30.4 14.1
S2S+PA(1) 25.4 30.0 14.4
S2S 19.6 21.9 12.3

S2S+PA(Concat-1-5)+Type 23.2 26.9 12.2

19.1% exact-match accuracy. This is the model that ensembles multi-
source sequence-to-sequence models for 5 previous assignments.
It significantly outperforms the rule-based and language model
baselines.

Table 5 compares the three variants of the RNN language model.
None of the language models outperform the rule-based baseline.
RNNLM+PA(1) is better than RNNLM+PA(1-5), despite the latter one
having more context as inputs. This is likely because the language
model was trained with too much context that is less relevant to
the current assignment thus distracts the model from the task of
assignment completion. We also observed that the language models
usually cannot predict the end-of-statement token correctly and
end up predicting very long sequence.

Table 6 compares the three variants of the n-gram language
model, where 𝑛 = 10 because it gives the best results among
𝑛 ∈ {1, ..., 10} on the development set. Both models 10gramLM
and 10gramLM+PA(1) are worse than the rule-based baseline, al-
though 10gramLM+PA(1) achieves a reasonable performance (20.0%
accuracy and 17.8 BLEU). Moreover, 10gramLM+PA(1-5) has much
worse performance, despite the fact that higher order n-grams con-
sistently shows lower cross entropy values (i.e., higher naturalness).
This again shows that using too much context to train language
model is not helpful and may distract the model from the task, and
compared to RNN language model, n-gram model is more likely to
be distracted.
Ablation Study. Table 7 compares the variants of sequence-to-
sequence models, all of which (except for the basic S2S model) are
better than the RNN language model baseline. The best model,
S2S+PA(Ensemb-1-5)+Type, significantly outperforms all sequence-
to-sequence models on all computed metrics. In preliminary ex-
periments, we tried using 6+ previous concurrent assignments, but
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found them significantly decreasing the performance, likely due to
the low similarity of those assignments to the current assignment.
Notably, all the multi-source models significantly outperform the
models without multi-source architecture (S2S and S2S+PA(Concat-
1-5)+Type), which shows that multi-source architecture is effective.

For type embedding, comparing S2S+PA(1) and S2S+PA(1)+Type,
there is an improvement, although not statistically significant. The
ensembling model S2S+PA(Ensemb-1-5)+Type has 37.3 BLEU, 48.0%
accuracy, and 19.1% exact-match accuracy, which is significantly
better than S2S (not including any context) and significantly better
than S2S+PA(1-5)+Type which uses one multi-source architecture
to include all previous concurrent assignments.

From these observations, we conclude that the using of ensem-
bling model to include multiple previous concurrent assignments
(local context) and the using of type embedding (global context)
have positive effect on the performance of the models. Language
model is not a good option for this task because it cannot effectively
utilize the context information, such as those available in previous
concurrent assignments.
Qualitative Analysis. We showcase two examples in Table 8 from
our corpus to illustrate our models. For each example, we show its
inputs (LHS, previous concurrent assignments, and relevant signal
types), its expected output RHS, and the predictions of RNNLM+PA(1),
S2S, S2S+PA(1)+Type, and S2S+PA(Ensemb-1-5)+Type models.

In the first example, the five previous concurrent assignments
have the same pattern m_7seg_? <= disp_7seg_segment(?), where ?
represents a missing character or number. The input LHS is similar
to the LHS of previous concurrent assignments, thus the output RHS
should also be similar to the RHS of previous concurrent assign-
ments and follow the pattern. RNNLM+PA(1) and S2S+PA(1)+Type
models learn the disp_7seg_segment(?) pattern, but cannot pre-
dict the correct number in the parenthesis. The S2S+PA(Ensemb-1-
5)+Type detects the pattern where the number in the parenthesis is
ascending and predicts the correct number “5” following the pattern.
Due to the lack of longer local context, RNNLM+PA(1) guesses a
wrong pattern to repeat the numbers, and S2S+PA(1)+Type guesses
a wrong pattern to decrease the number. Due to lack of context
(and especially global context), S2S predicts an irrelevant variable.

In the second example, there are several patterns in the RHS of
previous assignments but no clear pattern in the LHS. RNNLM+PA(1),
S2S+PA(1)+Type, and S2S+PA(Ensemb-1-5)+Type are still able to de-
tect the right pattern sseg_edu_cathode_out(?) for RHS, and the
latter two models predicts the right number in the parenthesis.
Without any context, the S2S model could not learn this pattern
and predicts both a wrong variable and value.

6 THREATS TO VALIDITY
Internal. As our goal was to compare different characteristics of
the models under the same environment, we did not fine-tune
the hyper-parameters for each assignment completion model in-
dividually. The models might achieve better performance if their
hyper-parameters are fine-tuned, but we do not expect changes to
our reported observations. We plan to evaluate the benefit of such
fine-tuning in future work.

Our scripts and implementation may contain bugs. To mitigate
this threat, at least two authors reviewed each script and the output

Table 8: Example Predictions of Our Models.

Repository: f32c_f32c
LHS: m_7seg_f
Previous Concurrent Assignments:
1st m_7seg_e <= disp_7seg_segment(4);
2nd m_7seg_d <= disp_7seg_segment(3);
3rd m_7seg_c <= disp_7seg_segment(2);
4th m_7seg_b <= disp_7seg_segment(1);
5th m_7seg_a <= disp_7seg_segment(0);

Types:
m_7seg_f 𝑜𝑢𝑡 𝑠𝑡𝑑_𝑙𝑜𝑔𝑖𝑐
m_7seg_2 𝑜𝑢𝑡 𝑠𝑡𝑑_𝑙𝑜𝑔𝑖𝑐
m_7seg_d 𝑜𝑢𝑡 𝑠𝑡𝑑_𝑙𝑜𝑔𝑖𝑐
m_7seg_c 𝑜𝑢𝑡 𝑠𝑡𝑑_𝑙𝑜𝑔𝑖𝑐
m_7seg_b 𝑜𝑢𝑡 𝑠𝑡𝑑_𝑙𝑜𝑔𝑖𝑐
m_7seg_a 𝑜𝑢𝑡 𝑠𝑡𝑑_𝑙𝑜𝑔𝑖𝑐
disp_7seg_segment 𝑠𝑡𝑑_𝑙𝑜𝑔𝑖𝑐_𝑣𝑒𝑐𝑡𝑜𝑟

Expected Output RHS: disp_7seg_segment(5)
Predictions:
RNNLM+PA(1) disp_7seg_segment(4)

S2S state_cur(234)

S2S+PA(1)+Type disp_7seg_segment(3)

S2S+PA(Ensemb-1-5)+Type disp_7seg_segment(5)

Repository: fpga-logi_logi-projects
LHS: pmod3(0)
Previous Concurrent Assignments:
1st pmod2(1)<= sseg_edu_cathode_out(1);
2nd pmod2(5)<= sseg_edu_cathode_out(0);
3rd sys_sda <= 'z';
4th sys_scl <= 'z';
5th vga_clk <= clk_50mhz;

Types:
pmod3 𝑖𝑛𝑜𝑢𝑡 𝑠𝑡𝑑_𝑙𝑜𝑔𝑖𝑐_𝑣𝑒𝑐𝑡𝑜𝑟
pmod2 𝑖𝑛𝑜𝑢𝑡 𝑠𝑡𝑑_𝑙𝑜𝑔𝑖𝑐_𝑣𝑒𝑐𝑡𝑜𝑟
sseg_edu_cathode_out 𝑠𝑡𝑑_𝑙𝑜𝑔𝑖𝑐_𝑣𝑒𝑐𝑡𝑜𝑟
sys_sda 𝑖𝑛𝑜𝑢𝑡 𝑠𝑡𝑑_𝑙𝑜𝑔𝑖𝑐
sys_scl 𝑖𝑛𝑜𝑢𝑡 𝑠𝑡𝑑_𝑙𝑜𝑔𝑖𝑐
vga_clk 𝑠𝑡𝑑_𝑙𝑜𝑔𝑖𝑐
clk_50mhz 𝑠𝑡𝑑_𝑙𝑜𝑔𝑖𝑐

Expected Output RHS: sseg_edu_cathode_out(2)
Predictions:
RNNLM+PA(1) sseg_edu_cathode_out(0)

S2S sseg_edu_anode_out(6)

S2S+PA(1)+Type sseg_edu_cathode_out(2)

S2S+PA(Ensemb-1-5)+Type sseg_edu_cathode_out(2)

logs. We also automated each step of the process to remove a chance
for human errors while executing the experiments.

We used only parsable files in our HD corpora and experiments.
To parse the files, we initially generated parsers using the ANTLR
parser generator framework [39] and publicly available grammars
that appeared to be the most complete [40, 42]. However, those
grammars are somewhat obsolete and do not support the latest ver-
sions of HDLs. To mitigate this threat, we extended these grammars
in several ways to increase the number of files that can be parsed
by supporting more recent language standards. Of all files in VHDL
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Table 9: VHDL Parsing Errors Categories.

Error Count

Mismatched input keyword 27,529
Extraneous input keyword 10,979
Unrecognized token 2,628
Not interpretable syntax 609
Missing input keyword 321

corpus, 20% still cannot be parsed. Table 9 shows the error cate-
gories and the count for each of them; note that there are multiple
errors per file. Note that parsing one file could generate multiple
parsing errors. We observed five types of errors: mismatched input
keyword (27,529), when the parser is expecting a keyword but got a
different one; extraneous input keyword (10,979), when the parser
is not expecting a keyword but got one; unrecognized token (2,628),
when the file contains binary data that the parser can not handle;
not interpretable syntax (609), when the parser could not find a
valid parsing rule for a code snippet; and missing input keyword
(321), when the parser is expecting a keyword but got none (due to
end of file).
External. We constructed our dataset from HDL repositories avail-
able on GitHub. We chose GitHub because of its popularity and
our prior experience with mining the repositories available on this
repository hosting service. As many HDs are not publicly available,
the HDs used in our study might not be representative of propri-
etary HDs. We mitigate this threat by ranking the repositories on
GitHub by the number of stars, which might indicate that these
repositories are also widely used by various companies. Addition-
ally, nowadays many HDs are made publicly available on GitHub
by hardware companies.

7 RELATEDWORK
We briefly discuss related work on (1) the naturalness of software,
(2) software engineering for HDs, and (3) code completion.
The Naturalness of Software. Hindle et al. [17] were the first
to study the naturalness of software written in Java and C. Re-
cently, Musfiqur et al. [44] replicated the study of naturalness for
several other imperative languages and on much larger corpora.
Our Section 4 replicates the study of naturalness for HDs, and we
have discussed our similarities and differences to these two works
throughout the text. Hellendoorn et al. [15] studied the natural-
ness of proofs written in Coq and HOL and found that proofs are
also repetitive and predictable. Unlike prior work, we studied the
naturalness of HDs.
Software Engineering for HDs. Clarke et al. [8] developed a pro-
gram slicing technique for VHDL based on mapping its operational
semantics to imperative languages. Sudakrishnan et al. [50] ana-
lyzed the bug fix history of four HD repositories written in Verilog
and grouped them into 25 bug fix patterns. They found that 29-55%
of the bug fix pattern instances involve assignment statements,
which reflects the need for automating completion for assignment
statements to reduce a chance for manual errors. Duley et al. [10]
developed Vdiff, a program differencing tool for Verilog that finds
syntactic differences of two versions of code. Notably, their dif-
ferencing algorithm is position-independent to robustly handle

language constructs whose relative orderings do not matter, e.g.,
concurrent processes. Uemura et al. [54] developed a clone detec-
tion tool for Verilog by first converting Verilog modules into pseudo
C++ code, then applying code clone detectors for C++. Schkufza
et al. [46] developed the first just-in-time compiler for Verilog to
speed up program execution on FPGAs. These software engineering
techniques for HDs have not considered using learning-based ap-
proaches. Our study reveals the naturalness of HDs which stands to
motivate other researchers and practitioners to improve previously
studied techniques based on deep learning for HDLs. We presented
the first work in this direction by designing and implementing an
assignment right hand side completion technique for VHDL.
Code Completion. Code completion is a task that recommends
upcoming code elements given the code context. Hindle et al. [17]
developed a code completion tool using n-gram language mod-
els. Proksch et al. [43] used Bayesian Networks for code comple-
tion which can utilize “global context” from methods, class, etc.
Li et al. [27] developed a neural code completion technique with
attention mechanism and pointer networks to better handle out-of-
vocabulary words. Raychev et al. [45] proposed an RNN language
model for completing holes in partial programs with the most likely
sequences of API method calls. Svyatkovskiy et al. [53] proposed
a neural code completion model that incorporates type informa-
tion, instantiated as a tool called Pythia for Python. Hellendoorn et
al. [16] applied several code completion tools on real-world data
and analyzed the real-world efficacy of those tools. Hu et al. [19]
proposed LSTM based code completion tool by inducing tokens
at character and token levels, thereby reducing vocabulary size.
Sun et al. [51] developed neural code generation model that im-
plements attention mechanism and tree-based AST reader. These
prior efforts targeted imperative languages. We introduced the first
code completion technique for concurrent assignments in VHDL
utilizing its unique semantics. Furthermore, unlike prior work on
code completion, we used a multi-source sequence-to-sequence
model with type embedding which we found suitable for our task.

8 CONCLUSION
We assembled large HD corpora consisting of source code written in
VHDL, Verilog, and SystemVerilog and reported on their character-
istics. We studied the naturalness of HDs, and our language model
evaluation reveals that HDs possess a high level of naturalness
similar to software written in imperative languages. Further, we
built several deep learning models for automated code completion
in VHDL utilizing unique characteristics of HDLs (e.g., semantics
of concurrent signal assignment statements). These characteristics
led to effective neural models, achieving a BLEU score of 37.3. Our
study stands to motivate other researchers and practitioners to
develop code automation techniques based on deep learning for
HDLs to provide powerful tools to hardware designers.
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