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Abstract

Machine Learning for Executable Code

in Software Testing and Verification

Pengyu Nie, PhD
The University of Texas at Austin, 2023

SUPERVISOR: Milos Gligoric

Software testing and verification are essential for keeping software systems

reliable and safe to use. However, it requires significant manual effort to write and

maintain code artifacts needed for testing and verification, i.e., tests and proofs. With

the pressure for developing software in limited time, developers usually write tests

and proofs much later than the code under test/verification, which leaves room for

software bugs in unchecked code.

Recent advances in machine learning (ML) models, especially large language

models (LLMs), can help reduce manual effort for testing and verification. Namely,

developers can benefit from ML models’ predictions to write tests and proofs faster.

However, existing models understand and generate software code as natural language

text, ignoring the unique property of software being executable. Software execution

is the process of a computer reading and acting on software code. Our insight is

that ML models can greatly benefit from software execution, e.g., by inspecting and

simulating the execution process, to generate more accurate predictions. Integrating

execution with ML models is important for generating tests and proofs because ML

models using only syntax-level information do not perform well on these tasks.
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This dissertation presents the design and implementation of two execution-

guided ML models to improve developers’ productivity in writing testing and verifi-

cation code: TeCo for test completion and Roosterize for lemma naming.

First, this dissertation introduces TeCo to aid developers in completing next

statements when writing tests, a task we formalized as test completion. TeCo ex-

ploits code semantics extracted from test execution results (e.g., local variable types)

and execution context (e.g., last called method). TeCo also reranks ML model’s

predictions by executing the predicted statements, to prioritize functionally correct

predictions. Compared to existing code completion models that use only syntax-level

information (including LLMs trained on massive code dataset), TeCo improves the

accuracy of test completion by 29%.

Second, this dissertation introduces Roosterize to suggest lemma names

when developers write proofs using proof assistants, such as Coq. Consistent coding

conventions are important as verification projects based on proof assistants become

larger, but manually enforcing the conventions can be costly. Existing ML models

for method naming, a similar task in other programming languages, extract and

summarize information extracted from code tokens, which is not suitable for Coq

where the lemma names should exhibit semantic meanings that are not explicit in

code tokens. Roosterize leverages the execution representations of the lemma from

various phases of the proof assistant’s execution, including syntax trees from the

parser and elaborated terms from the kernel. Roosterize improves the accuracy of

lemma naming by 39% compared to baselines.

Our findings in this dissertation support that the integration with execution

can effectively improve the accuracy of ML models for testing and verification, which

enables developing trustworthy software with high-quality tests and proofs with less

manual effort.
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Chapter 1: Introduction

Software plays an important role in our everyday lives, and it is the founda-

tion of many important technologies nowadays, including artificial intelligence, au-

tonomous driving, cryptocurrency, etc. Bugs in software frequently happen and can

be harmful, causing anything from bad user experiences to loss of lives [32, 33]. To

prevent software bugs and ensure software correctness, developers practice software

testing and verification to check if the software matches its specifications, i.e., the

expected behaviors of the software.

Software testing, which is the most commonly-used technique in industry for

checking software correctness, exercises the software on a set of given inputs and

compares the results against expected outputs. Each exercise is called a test case.

In popular object-oriented languages like Java, a test case is usually written as a

method with several statements for preparing inputs, invoking the method under

test, and checking the outputs; thus, it is also referred to as a test method. For

example, Figure 1.1 shows a test method testToNextMarkerPartialVar1 written

in Java using the JUnit [97, 98] testing framework, together with its method under

test readToNextMarkerNewBuffer. Once executed with the JUnit testing framework,

there are two possible outcomes for each test method: the test method passes, which

means the actual execution outputs match the expectations specified in this test

method; or the test method fails, due to the actual execution outputs not matching

expected outputs, which means the software might contain a bug.

Software verification, on the other hand, tries to prove that the software

matches its specifications for all cases instead of hand-picked input-output pairs.

We focus on software verification using proof assistants like Coq [25], which has been

adopted in various domains such as compilers [44]. The specifications are written as

lemmas, which describe the invariants that are expected to hold at all times. Each

lemma is followed by a proof script, which describes the steps to prove the lemma.
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1 class SegmentReader {

2 public ByteBuffer readToNextMarkerNewBuffer() throws IOException {

3 if (done)

4 return null;

5 List<ByteBuffer> buffers = new ArrayList<ByteBuffer>();

6 readToNextMarkerBuffers(buffers);

7 return NIOUtils.combineBuffers(buffers);

8 }

9 }

10

11 class SegmentReaderTest {

12 @Test

13 public void testToNextMarkerPartialVar1() throws IOException {

14 byte[] bytes = new byte[] { 0, 0, 1, 42, 43, 44, 45, 46, 0, 0, 1, 43 };

15 ReadableByteChannel ch = Channels.newChannel(new ByteArrayInputStream(bytes));

16 SegmentReader reader = new SegmentReader(ch, 1);

17 reader.setBufferIncrement(1);

18 ByteBuffer buf1 = reader.readToNextMarkerNewBuffer();

19 ByteBuffer buf2 = reader.readToNextMarkerNewBuffer();

20 ByteBuffer buf3 = reader.readToNextMarkerNewBuffer();

21 Assert.assertEquals(ByteBuffer.wrap(bytes, 0, 8), buf1);

22 Assert.assertEquals(ByteBuffer.wrap(bytes, 8, 4), buf2);

23 Assert.assertNull(buf3);

24 }

25 }

Figure 1.1: Example test method written in Java using the JUnit test-
ing framework. Code from jcodec/jcodec in files SegmentReader.java and
SegmentReaderTest.java. The test method testToNextMarkerPartialVar1 tests
the method under test readToNextMarkerNewBuffer by invoking it on a byte array.

1 Variables A B : Type.

2 Hypothesis A_eq_dec : forall x y : A, {x = y} + {x <> y}.

3

4 Definition update st h (v : B) :=

5 fun nm => if A_eq_dec nm h then v else st nm.

6

7 Lemma update_nop :

8 forall (sigma : A -> B) x y,

9 update A_eq_dec sigma x (sigma x) y = sigma y.

10 Proof using.

11 unfold update.

12 intros. break_if; congruence.

13 Qed.

14

15 Lemma update_diff :

16 forall (sigma : A -> B) x v y,

17 x <> y ->

18 update A_eq_dec sigma x v y = sigma y.

19 Proof using.

20 unfold update.

21 intros.

22 break_if; congruence.

23 Qed.

Figure 1.2: Example lemma and proof script written in Coq. Code from
uwplse/StructTact in file Update.v. The function update returns a new version of
a given function st, and this returned function maps h to v (specified by the lemma
update diff) but otherwise behaves as st (specified by the lemma update nop).

14



For example, Figure 1.2 shows two lemmas update diff and update nop and their

proof scripts written in Coq, together with the function to be verified, update. Once

executed with the Coq proof assistant (i.e., proof checked), there are two possible

outcomes for each lemma: the proof succeeds, which means the software matches its

expected behaviors specified in the lemmas; or the proof fails, which may indicate an

error during verification (e.g., incorrect proof scripts) or a bug in the software.

Software testing and verification are two complementary techniques to ensure

software correctness. Testing detects the presence of bugs [37] (within the test inputs

written by developers), and verification checks the absence of bugs (with regards to

the lemmas written by developers). However, writing high-quality tests and proofs1

remains largely a manual and tedious process. A prior study found that close to half

of developers’ time is spent on testing [49]. As software development time budget

is limited, developers frequently prioritize writing code under test and defer writing

tests [216]. Verification projects using proof assistants are growing in scale and usually

incur more cost than testing [177]; for example, CompCert [44, 112], the verified C

compiler written in Coq, has more than 120K lines of code and took many person-

years to develop. The manual effort of writing tests and proofs can be a major

burden on checking the correctness of changed or added code in a timely manner,

leaving room for hidden software bugs.

One approach to reduce the manual effort is to use machine learning (ML)

models to generate (some parts of) tests and proofs, which is made possible by re-

cently proposed deep neural networks (such as recurrent neural networks [85, 212]

and transformers [200]) that can effectively learn from the existing tests and proofs

in software corpora. Namely, given the input of a partially written test or proof (e.g.,

the first few statements in a test), an ML model can make predictions on the missing

part (e.g., the next statement in the test). Developers can then accept/revise the

1We use proofs to refer to all code artifacts that need to be written during verification, including
lemmas and proof scripts.
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predictions, which is easier than manually writing tests and proofs without the help

from ML models.

ML models have been applied to many tasks in the generation and sum-

marization of (general-purpose) code [11, 125, 204, 208]. However, only few re-

searchers have studied applying ML models on generating tests and proofs, and sug-

gested that performance of ML models on testing- and verification-related tasks is

low [21, 55, 90, 198, 207, 215]. To accomplish these tasks, ML models need to reason

about execution, e.g., to predict the program state after executing the method un-

der test with some inputs. Prior work has shown that ML models make mistakes in

reasoning about execution and do not generalize well to complicated code [15, 149].

Tests and proofs are themselves executable, which can be integrated with the

ML models to enhance the reasoning about execution. We define execution as the

process of a computer reading and acting on software code. In the context of testing

(using the common xUnit testing frameworks), the execution starts by triggering the

testing framework, which then invokes each test method and collects their results. In

the context of verification (using proof assistants), the execution starts by invoking

the proof assistant, which iteratively evaluates and checks each specification, lemma,

and proof script. Execution is a rich source of code semantics because it involves

type checking, computing the value of variables, resolving the invocations to external

methods/functions, etc.

We believe that integrating execution with ML models is the key to build more

performant ML models for software testing and verification. Execution can be inte-

grated in two aspects: extracting code semantics as context and checking the quality

of predictions. Code semantics can be extracted by static analysis, e.g., simulating

a part of execution (e.g., type checking) on source code or compiled code, and/or

dynamic analysis, e.g., alternating the execution to record the type and value of some

variables. The extracted code semantics is deterministic and accurate. On the con-

trary, the code semantics exhibited in ML models (e.g., embeddings and middle layers
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of neural networks) is “learned” based on statistical analysis of the inputs and outputs

and can be nondeterministic and inaccurate. By providing accurate code semantics

from execution as inputs, we can ground ML models’ predictions on facts and reduce

the errors caused by inaccurate code semantics learned from noisy data (e.g., from

code written in an obsolete version of a programming language). Similarly, when

generating the prediction as a sequence of tokens, pure ML models do not necessarily

generate executable code (i.e., a passing test or proof), or even compilable code. Ex-

ecution can serve as a checker to determine whether a generated prediction can lead

to a passing test or proof, which can be used to improve the quality of predictions,

for example, by reranking multiple predictions.

This dissertation presents two main bodies of research on ML models inte-

grated with execution for test completion and lemma naming, respectively, with the

goal to improve developers’ productivity in testing and verification.

The thesis statement of this dissertation is as follows:

Integrating execution with ML models is vital for developing performant ML
models to reduce the manual effort required in testing and verification, by making
predictions on code completion and coding conventions.

This dissertation makes the following key contributions:

⋆ We present TeCo for completing next statements when writing tests, a task we

formalized as test completion. TeCo is the first ML model for test completion

that uses execution-guided code semantics as inputs and reranks the predictions by

test execution. TeCo exploits code semantics extracted from test execution results

(e.g., local variable types) and execution context (e.g., last invoked method). TeCo

also reranks the candidate next statements predicted by the ML model by execution

to prioritize functionally correct outputs. We implemented TeCo for Java, and

evaluated TeCo on a corpus of 130,934 test methods from 1,270 open-source Java

projects. Compared to existing code completion models that use only syntax-level
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data (including large language models trained on massive code dataset), TeCo

improves the accuracy of test completion by 29%.

⋆ We present Roosterize for suggesting lemma names when developers write proofs

using the Coq proof assistant. Roosterize is the first ML model for automati-

cally learning and suggesting lemma names, using the runtime representations of

the lemmas to generate more accurate predictions. Existing ML models for method

naming, a similar task in other programming languages, extract and summarize in-

formation extracted from code tokens, which is not suitable for Coq where the

lemma names should exhibit semantic meanings that are not explicit in code to-

kens. Roosterize leverages the runtime representations of the lemma from various

phases of executing the proof assistant, including syntax trees from the parser and

elaborated terms from the kernel. We evaluated Roosterize on a corpus of 297K

lines of Coq code, and found that Roosterize improves the accuracy of lemma

naming by 39% compared to the best baseline model.

The code and corpora of both TeCo2 and Roosterize3 are open sourced to facilitate

future research. We also implemented a Visual Studio Code plugin for Roosterize4

to make it easier for developers to use our technique.

2https://github.com/EngineeringSoftware/teco
3https://github.com/EngineeringSoftware/roosterize
4https://github.com/EngineeringSoftware/roosterize-vscode
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Chapter 2: Learning Deep Semantics for

Test Completion

Writing tests is a time-consuming yet essential task during software develop-

ment. We propose to leverage recent advances in deep learning for text and code

generation to assist developers in writing tests. We formalize the novel task of test

completion to automatically complete the next statement in a test method based on

the context of prior statements and the code under test. We develop TeCo—a deep

learning model using code semantics for test completion. The key insight underlying

TeCo is that predicting the next statement in a test method requires reasoning about

code execution, which is hard to do with only syntax-level data that existing code

completion models use. TeCo extracts and uses six kinds of code semantics data,

including the execution result of prior statements and the execution context of the

test method. To provide a testbed for this new task, as well as to evaluate TeCo,

we collect a corpus of 130,934 test methods from 1,270 open-source Java projects.

Our results show that TeCo achieves an exact-match accuracy of 18%, which is 29%

higher than the best baseline using syntax-level data only. When measuring func-

tional correctness of generated next statements, TeCo can generate runnable code

in 29% of the cases compared to 19% obtained by the best baseline. Moreover, TeCo

is significantly better than prior work on test oracle generation.1

2.1 Overview

Software testing is the most common approach in industry to check the correct-

ness of software. However, manually writing tests is tiresome and time-consuming.

One option is to automatically generate tests. Researchers have proposed a

1Parts of this chapter are published at ICSE 2023 [146]. Compared to the version published at
the conference, this chapter adds Codex as a baseline and a qualitative study of results.
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number of techniques in this domain, including fuzz testing [156, 218, 219], property-

based testing [6, 31, 38, 41, 68, 86, 108], search-based testing [61, 77], combinatorial

testing [43], etc. Despite being effective in detecting software bugs, these techniques

generate tests with stylistic issues, as test code generated through these techniques

rarely resemble manually-written tests [50, 181, 220] and can be hard to maintain.

As a result, these automated techniques end up being used only as supplements to

manually-written tests.

Another option is to use machine learning, namely training a model on existing

manually-written tests and applying it when writing new tests, which is a plausible

methodology supported by the naturalness of software [83, 172]. Advances in deep

learning such as recurrent neural networks [85, 182] and large-scale pre-trained trans-

former models [113, 170, 171, 200] have led to promising new research in a variety

of software engineering tasks, such as code completion [40, 114, 168, 173, 195, 196]

and code summarization [4, 5, 94, 109, 206]. Code generated with modern models

are intelligible to humans, yet we cannot fully rely on them to generate large chunks

of meaningful code, or expect them to understand the broader project context.

Our goal is to design machine learning approaches to aid developer productiv-

ity when writing tests. We present a novel task—test completion—to help developers

write tests faster. Specifically, once a developer starts writing a test method, the

developer can leverage test completion to automatically obtain the next statement in

the test code (at any point the developer desires).

Despite being closely related to code completion [114, 168, 173, 195, 196], test

completion is distinct in that test code has several unique characteristics. First, the

method under test provides extra context that can be leveraged when completing a

test method. Second, test code follows a different programming style that focuses on

exercising the method under test. Specifically, a test method usually consists of a

sequence of statements in the following order: prepare test inputs, execute method

under test, and check execution results using assert statements (i.e., test oracles).
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We present the first deep learning solution—TeCo—that takes into account

these unique characteristics of tests. TeCo uses code semantics as inputs for novel

ML models and performs reranking via test execution.

Code semantics refers to the information related to test/code execution not

available in the syntax-level data (i.e., source code). TeCo extracts code semantics

(e.g., types of local variables) using software engineering tools and feeds them directly

to the model. Once top-k predictions are produced, TeCo further ensures the out-

put quality by executing the generated statements, and prioritize the runnable and

compilable statements over the others.

We design the code semantics used by TeCo based on our experience with

software analysis in order to best capture the unique characteristics of the test com-

pletion task. In total, we consider six different kinds of code semantics that can

be grouped to two categories: (1) execution result, including the types of the local

variables and whether fields are initialized; (2) execution context, including the setup

and teardown methods, the last called method in the test method, and statements in

non-test code with similar previous statements.

We implemented TeCo to support test methods written in Java. We evaluate

TeCo on a newly collected corpus consisting of 130,934 test methods with 645,633

statements from 1,270 projects. We release this corpus to the community as a testbed

for the test completion task.

We performed extensive evaluations of TeCo on this corpus—covering lexi-

cal similarity and functional correctness—to show the importance of combining code

semantics with deep learning. We report results comparing the generated statements

against the gold manually-written statements using a suite of automatic metrics:

exact-match accuracy, top-10 accuracy, BLEU [160], CodeBLEU [176], edit similar-

ity [196], and ROUGE [120]. TeCo significantly outperforms baselines that use only

syntax-level data on all metrics. We also measure functional correctness by trying

to compile and run the generated statements. TeCo can produce a runnable next
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statement 29% of the time, while the figure for the best baseline model is only 19%.

Moreover, we also evaluated TeCo on the task of test oracle generation [55, 207],

which is a sub-task of test completion. TeCo achieves an exact-match accuracy of

16%, which significantly outperforms the prior state-of-the-art’s exact-match accu-

racy of 12%.

The main contributions of this chapter include the following:

• Task. We propose a novel task, test completion, with the goal to help developers

write test methods faster.

• Idea. We propose using code semantics and code execution when designing ML

models targeting code-related tasks.

• Model. We developed TeCo, the first transformer model trained on large code

semantics data for test completion. Furthermore, TeCo performs reranking by

execution. The use of code semantics is vital for correctly modeling the execution

process in the test methods.

• Corpus. We created a large corpus of 130,934 test methods from 1,270 open-source

projects. We believe this corpus will also be useful to many other tasks related to

software testing.

• Evaluation. Our extensive evaluation shows that TeCo significantly outperforms

strong baselines on all automatic metrics, both on test completion and its sub-task:

test oracle generation. We also evaluate the functional correctness of generated code

by compiling and running the generated statements.

TeCo and our test completion corpus are publicly available on GitHub:

https://github.com/EngineeringSoftware/teco.
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public GMOperation addImage(final File file) {

if (file == null) {

throw new IllegalArgumentException("file must be defined"); }

getCmdArgs().add(file.getPath());

return this;

}

method under test

@Test

public void addImage_ThrowsException_WhenFileIsNull() throws Exception

test method signature

exception.except(IllegalArgumentException.class);

prior statements

sut.addImage((File) null);

next statement

Figure 2.1: Example of test completion: given the code under test (represented by the
method under test), test method signature, and prior statements, the goal is to gen-
erate the next statement. Code from sharneng/gm4java in class GMOperationTest.

2.2 Task

In this section, we more formally describe the test completion task and illus-

trate the task using an example.

Given an incomplete test method, our goal is to automatically generate the

next statement in that test method. We assume that the following inputs are provided

to a test completion system: (1) the code under test, which includes both the test

method’s associated method under test as well as other non-test-method code in the

project, (2) the test method signature, (3) prior statements in the incomplete test

method (which can be zero or more statements).

We illustrate our task in Figure 2.1. The example shows (in the yellow boxes)

the method under test, the test method signature, and the prior statements (only one

statement in this example), as well as (in the last green box) the next statement that

should be generated by a test completion system.

We seek to generate statements in the body of the test method, thus the test

method signature (including the annotation and the name of test method) are only
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used as inputs and they are not the prediction target of the test completion task.

We also do not consider the context of other already available test methods from the

same project when completing a test method, to prevent any model from cheating by

copying code from other similar test methods. Our defined test completion task is

applicable to the situation when a developer already knows what to test (thus knows

the method under test and the test method signature), and wants to complete the

next statement at any point when writing the test method, regardless of whether

the project has existing tests or not. We also focus on modeling the body of test

methods as a sequence of statements, because test methods with control flows (e.g., if

statements, loops, and try blocks) are rare; we found less than 10% test methods have

control flows in our experiments. Most testing frameworks recommend sequential

test method body and provide annotations to replace control flows, for example,

@ParameterizedTest for replacing loops in JUnit 5 [98].

2.3 Extraction of Code Semantics

In this section, we describe the six kinds of code semantics extracted and used

by TeCo.

For each kind of code semantics, we design and implement a static analysis

algorithm to extract it. Static analysis is the analysis of code without executing it,

guided by the grammar and semantics of programming languages. The advantage of

using static analysis is that it does not require configuring the runtime environment

which can be cumbersome for some projects, and can be applied on partial code (for

example, without accessing the dependency libraries of a project, which is needed

when executing the code). It is also much faster than executing the code directly,

which enables us to collect code semantics on a large corpus of code. However, static

analysis can sometimes be inaccurate; for example, when some values are unknown

without executing code (e.g., user inputs), static analysis has to over-estimate the

analysis results (e.g., assuming both branches of an if statement may be executed).
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Figure 2.2: TeCo’s workflow of extracting code semantics.

This may not be a problem for TeCo as the deep learning model can learn to ignore

the inaccurate parts.

Figure 2.2 illustrates the general workflow of TeCo’s static analysis which

consists of two phases: given a project, in the collection phase TeCo collects a

shared set of all code elements (classes, methods, fields), and in the analysis phase

TeCo extracts each kind of code semantics from the code elements set using a specific

algorithm. The code semantics can be organized into two categories based on their

content: execution result and execution context. Execution result includes: (S1) lo-

cal var types, (S2) absent types, and (S3) unset fields; execution context includes:

(S4) setup and teardown, (S5) last invoked method, and (S6) similar statement. In

the following paragraphs we describe the collection phase and the analysis phase for

each kind of code semantics in more detail.

The collection phase. The goal of this phase is to collect a set of code elements that

will be shared by all test methods and all six kinds of code semantics. TeCo collects

three kinds of code elements: classes, methods, and fields; each method and field

should have one class as its parent. For each element, TeCo collects its metadata,

including name, type, access modifiers, annotations (if any), etc. For each class,

TeCo records if it is a non-test class, test class, or a class in a library that is in the

list of dependencies. TeCo additionally collects the source code and bytecode for

all their methods of non-test and test classes. We do not utilize the source code or

bytecode in dependencies because they are not needed for the analysis.
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(S1) local var types data refers to the types of the local variables in the test

method. The types are extracted by partially interpreting the bytecode of the test

method without considering the values of variables. Note that this is more accurate

than reading the local variable table which contains the declared types of local vari-

ables; for example, after interpreting the statement AbstractWComponent comp = new

SimpleComponent(), the type of comp is SimpleComponent, which is more accurate

than its declared type AbstractWComponent. This data provides information on what

types of test inputs are available to be used in the next statement.

(S2) absent types are the types of the variables that are needed for invoking the

method under test but have not been prepared in the test method. Types needed for

invoking the method under test include its parameter types, plus the class under test

(the declaring class of the method under test) if the method under test is not a static

method. We consider a type as prepared if a local variable with this type has been

initialized in prior statements, or a test class’s field with this type has been initialized

in prior statements or setup methods. This data focuses on what types of test inputs

are missing, and thus may likely need to be prepared in the next statement.

(S3) unset fields data refers to the fields of the test class and the class under test

that have not been initialized. We deem a field as initialized if there is any statement

for setting the value of the field in the test method, the setup methods, or methods

transitively invoked from the test method or the setup methods (up to 4 jumps, as

initializations of the fields of interest further in call graph are rare). The fields in this

data are likely to be initialized in the subsequent statements.

(S4) setup and teardown data refers to the source code of the setup and teardown

methods in the test class. When a test framework executes tests, setup methods are

executed before the test method to set up the environment (e.g., connection to a

database), and teardown methods are executed after the test method to clean up the

environment. By providing this context, the test completion system can know what

environment is available to use in the test method, and also can avoid duplicating the
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(S2) absent types

(S4) setup and teardown

1 public class GMOperation extends org.im4java.core.GMOperation {

2 public GMOperation addImage(final File file) {...}

3 ...}

4

5 public class GMOperationTest {

6 GMOperation sut;

7 @Before

8 public void setup() {... sut = new GMOperation(); ...}

9

10 @Test

11 public void addImage_ThrowsException_WhenFileIsNull() throws Exception {

12 exception.except(IllegalArgumentException.class);

13 sut.addImage((File) null);

14 }

15 ...}

Figure 2.3: Two kinds of code semantics (S2 and S4, highlighted in the top two blue
boxes) extracted for the example in Figure 2.1, which help TeCo generate the correct
next statement (highlighted in the bottom green box).

statements already in the setup and teardown methods.

(S5) last invoked method data is the source code of the last invoked method in

the prior statements, which could be empty if no method has been invoked yet. This

data provides more context on what has been executed in prior statements.

(S6) similar statement data is a statement in the non-test code of the project that

has the most similar prior statements context to the prior statements in the incom-

plete test method. TeCo uses the BM25 algorithm [180] to search for similar prior

statements. Only 2 prior statements are considered during the search, as increasing

the window size leads to much longer search time without improving the quality of the

returned similar statement. We expect this data to be similar to the next statement

to be predicted.

Implementation. In the collection phase, TeCo uses JavaParser [96] to collect

source code and ASM [36] to collect bytecode. The collection phase takes 136s per

project on average. All analysis algorithms are implemented in Python, with the

help of ASM for partially interpreting bytecode (for S1) and scikit-learn [163] for the

BM25 algorithm. The analysis phase takes 0.018s–0.247s per test method on average,

depending on the kind of code semantics data.
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Example. Figure 2.3 shows two kinds of code semantics (S2 and S4) extracted for

the example in Figure 2.1 that help the generating the correct next statement. The

(S2) absent types data is File, because invoking the method under test addImage re-

quires GMOperation (as addImage is not a static method) and File, but GMOperation

is already available as a field sut in the test class (on line 6). The (S4) setup and

teardown data is the method setup in the test class GMOperationTest which initial-

izes the sut field (on line 8). Note that the other kinds of code semantics are either

empty or not useful for this example, but are useful for some other examples.

2.4 TeCo’s Deep Learning Model

This section describes the deep learning approach that TeCo uses to solve

the test completion task. Figure 2.4 illustrates the overall model architecture: an

encoder-decoder transformer model whose input includes both code semantics and

syntax-level data and output is the prediction of the next statement.

2.4.1 Encoder-Decoder Transformer Model

Our model is based on the encoder-decoder architecture that considers both

input and output as sequences, which has been applied to many sequence generation

tasks including code summarization [4, 94, 109] and code generation [121, 209]. In

the context of TeCo, the input is the syntax-level data (method under test, test

signature, and prior statements) plus the code semantics extracted from the test to

be completed (S1-S6), and the output is the next statement.

More formally, TeCo is given the test to be completed T and the code under

test C as inputs, where C includes the method under test xmut, and T consists of two

parts: the test signature xsign and prior statements xprior. The goal is to generate the

next statement y. TeCo extracts code semantics as described in Section 2.3:

xS1, xS2, xS3, xS4, xS5, xS6 = analysis(T,C)
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Figure 2.4: TeCo’s model architecture.

Each input piece x and output y is a sequence of subtokens, which is obtained

by subtokenizing the code or extracted data’s string format using the BPE (byte-

pair encoding) algorithm [170, 187]. The goal of subtokenization is to break down

long unique identifier names into small common subtokens so that the model can learn

better, for example, the identifier GMOperation is broken down into three subtokens G,

M, and Operation by TeCo’s BPE algorithm. TeCo combines the input pieces into

a single input sequence by concatenating them with a delimiter ⟨sep⟩ (the ordering

of the sequences is configurable):

x = xS3 ⟨sep⟩ xS5 ⟨sep⟩ xS1 ⟨sep⟩ xS2 ⟨sep⟩ xS6 ⟨sep⟩

xS4 ⟨sep⟩ xmut ⟨sep⟩ xsign ⟨sep⟩ xprior

The maximum number of subtokens that TeCo can accept, due to the limita-

tion of the underlying model, is 512. If the input sequence is longer than that, TeCo

keeps the last 512 subtokens. In our experiments, the number of subtokens in the

input sequence ranges from 23 to 2,426 (average: 243.88) and exceeds the limitation

of 512 subtokens in 6% of the cases. As a result, more important information should

be placed at the end of the input sequence to avoid being truncated. The ordering
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of code semantics is decided based on our domain knowledge of which kind of data

would contain more important information, and we always put the syntax-level data

at the end (as they deliver the basic information for the task). Exploring all possi-

ble orderings may discover better models but is too computationally expensive. We

plan to investigate the impact of the orderings by designing experiments with more

affordable costs in the future.

Then, TeCo uses a transformer model [200] to learn the conditional probabil-

ity distribution P (y|x). The model computes this by first using an encoder to encode

the input sequence into a deep representation, and then using a decoder which reads

the deep representation and generates the output sequence one subtoken at a time:

h =encoder(x)

P (y[i]|y[: i], x) =decoder(y[: i], h), for each i

2.4.2 Fine-tuning

Recent work shows that pre-training a large-scale transformer model on a large

corpus of code and text and then fine-tuning the model on downstream tasks lead

to better performance than training a model from scratch [5, 40, 60, 206]. However,

pre-training is only performed on syntax-level data in order to be generalizable to

many downstream tasks with different semantics. Prior work shows that large-scale

pre-trained models may not perform well on simple tasks of executing the code [149].

This indicates that they learned little about code semantics.

We believe that fine-tuning on code semantics is vital for pre-trained models to

perform well on execution-related tasks such as test completion. During pre-training,

the model mainly learns the syntax and grammar of programming languages. If

only syntax-level data is used during fine-tuning, the model would have to infer the

semantics of execution, which can be very inaccurate because the execution can be

complicated and the context provided by the syntax-level data is limited. By contrast,

code semantics are extracted using reliable static analysis algorithms in TeCo so that
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the model can directly use such data instead of inferring. Thus, during fine-tuning of

TeCo, the model learns how to understand and process code semantics in addition

to the syntax-level data.

For the pre-trained model, we use CodeT5 [206], which is a large-scale encoder-

decoder transformer model pre-trained on a bimodal corpus of code in multiple pro-

gramming languages (including Java) and text. We fine-tune the model on a corpus

for test completion T C by minimizing the cross-entropy loss:

loss =
∑

x,y∈T C

− logP (y|x) =
∑

x,y∈T C
i∈[0,|y|)

− logP (y[i]|y[: i], x)

2.4.3 Inference

At inference time, TeCo uses the beam search algorithm with a beam size

of 10. Specifically, starting from a special begin-of-sequence subtoken y[0] = ⟨s⟩,
TeCo iteratively runs decoder to generate the most likely next subtokens which is

appended to the output sequence; only the top 10 sequences with the highest total

probability are kept at each step. Each output sequence is completed upon generating

a special end-of-sequence subtoken ⟨/s⟩. The beam search terminates after generating

10 completed output sequences. As repeating the same subtoken rarely happens in

practice, we apply a repetition prevention mechanism that penalizes the probability

of generating the same subtoken as the previous subtoken [101].

2.4.4 Reranking by Execution

The model can generate plausible outputs by maximizing the generation prob-

ability that it learnt during fine-tuning. However, there is no guarantee for the gen-

erated statements—subtoken sequences—to be compilable and runnable code. Ar-

guably, generating compilable and runnable code is more important than generating

plausible but non-executable code in the test completion task, because it is crucial

for developers observe the runtime behavior to check and revise the predictions.
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Figure 2.5: Procedure of detecting whether a statement is compilable and runnable.

We propose to use reranking by test execution to improve the quality of the

generated statements. Specifically, after collecting the top-10 predictions from beam

search ranked by their probabilities, denoted as Y , TeCo checks whether each of

them is compilable and runnable. Then, TeCo reranks the outputs into Ŷ where

one output yi is ranked higher than another yj if: (1) yi is runnable and yj is not;

or (2) both are not runnable, but yi is compilable and yj is not; or (3) both have

the same runnable and compilable status, and P (yi) > P (yj). In this way, generated

statements that are compilable and runnable are prioritized over the others.

TeCo detects whether a generated statement is compilable and runnable by

putting it in a synthesized test class with the required context, isolated from being

affected by other test methods in the same project. The procedure is illustrated in

Figure 2.5, specifically:

1. Create an isolated test class with a test method using the signature and prior

statements, followed by the generated statement.

2. Extract the other non-test methods from the original test class (including setup,

teardown, and utility methods) into the isolated test class.

3. Generate an ad-hoc main method in the isolated test class which calls setup meth-

ods, the test method, and teardown methods in order.
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4. Compile the isolated test class with all the dependencies specified in the project’s

build configuration as well as all non-test classes in the project.

5. If the compilation succeeds (at which point the statement is considered to be

compilable), execute the compiled test class; the statement is considered to be

runnable only if there is no unexpected exception or assertion failure during the

execution (catching expected exception, e.g., via exception.except(...), is consid-

ered as runnable). The execution of the isolated test class includes two steps:

(a) If the project is using JUnit 4 [97] testing framework, we try to use its com-

mand line runner to run the isolated test class; the JUnit 4 runner is more

robust because it properly utilizes all JUnit features that our ad-hoc main

method does not handle, e.g., @RunWith.

(b) If the project is not using JUnit 4 or running with JUnit 4 runner failed (i.e.,

JUnit 4 runner considers the statement as not runnable, which is sometimes

a false alarm), we run the ad-hoc main method.

2.5 Corpus

As test completion is a new task, we construct a large corpus that can serve

as a testbed for our work and future research. We collected data from the same

subject projects used by CodeSearchNet [91], which is a large corpus of code and

comments that is frequently used in ML + code research [60, 125, 206]. Out of the

4,767 Java projects in CodeSearchNet, we used the 1,535 projects that: (1) use the

Maven build system (for the simplicity of data collection; TeCo is not limited to any

build system); (2) compile successfully, and (3) have a license that permits the use

of its data. We collected the corpus in Spring 2022. To ensure corpus quality, we try

to use the latest stable revision of each project by finding its latest git-tag; but if it

does not have any git-tag on or after Jan 1st, 2020, we use its latest revision.

To extract test methods from these projects, we first collected the set of

code elements from each project using the same toolchain for the collection phase
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of TeCo’s static analysis (Section 2.3). We identified the test methods written in

JUnit 4 [97] and JUnit 5 [98] testing frameworks, which are the main frameworks used

for writing tests in Java. Specifically, we searched for methods with a test annota-

tion (@org.junit.Test or @org.junit.jupiter.api.Test) and without an ignored-

test annotation (@org.junit.Ignore or @org.junit.jupiter.api.Disabled). This

initial search resulted in 221,666 test methods in all projects.

Then, we further filtered the test methods to ensure corpus quality. We fil-

tered test methods that are badly named (e.g., test0; 2,490 cases) and that do not

follow the method signature of common JUnit non-parameterized test methods (e.g.,

parameter list is not empty, return type is not void; 1,908 cases). Then, we tried

to locate the method under test for each test method, using the following enhanced

procedure originally proposed by Watson et al. [207]:

1. If there is only one invocation to a method, select it as the method under test;

2. If a class under test can be found by removing “Test” from the test class’s name:

(a) If there is only one invocation to a method declared in class under test, select

it as the method under test;

(b) Select the last method declared in class under test invoked before the first

assertion statement, if any;

3. Select the last invoked called before the first assertion statement, if any;

4. Select the last invoked called, if any.

We removed 36,818 test methods for which we could not locate the method under

test after this procedure.

We used the line number table to find the bytecode instructions corresponding

to each statement, and we removed 633 cases where we could not do this because

of multiple statements on the same line. We also removed 5 corner cases where the

source code of the test method was not properly collected by JavaParser. After that,

we set size constraints on the data: the test method should have at most 20 statements

(filtered 8,222 cases); the method under test should have at most 200 tokens (filtered
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9,787 cases); the method under test and the test method together should have at

most 400 tokens (filtered 1,288 cases); each statement in the test method should have

at most 100 tokens (filtered 1,726 cases).

We also removed several cases that introduce extra overhead during analysis:

test methods with if statements, loops, and try blocks, because they entail non-

sequential control flow which is not suitable to be modeled by predicting the next

statement given prior statements (22,435 cases); and test methods using lambda

expressions [154], because they complicate many static analysis algorithms (5,420

cases). We plan to lift these limitations in future work.

Lastly, we masked the string literals in data by replacing them with a common

token “STR”, similar to prior work on code completion [196]. Although string literals

are frequently used in test methods, for example as logging messages, test inputs, or

expected outputs, they pose challenges for a pure-deep-learning solution to generate

because they have a different style than other parts of the code and can sometimes

be very long. Thus, we focus on predicting the next statement with masked string

literals, and leave predicting the content of the string literals as future work.

After filtering, we have a corpus with 1,270 projects (removed 265 projects be-

cause no data was left after filtering), 130,934 test methods, and 645,633 statements.

We follow the same project-level training/validation/evaluation split as Code-

SearchNet. Because CodeT5, the pre-trained model that TeCo uses, also followed

the same project-level split, our experiments will not have data leakage issues of eval-

uating on the data that the model was pre-trained on. Table 2.1 (top part) shows

the statistics of our corpus, where the first row (All) is for the entire corpus, and

the next three rows (Training, Validation, Evaluation) are for each set after the split.

Out of the 130,934 test methods, 101,965 (77.88%) are runnable following our proce-

dure described in Section 2.4.4. Note that with the masking of string literals, some

test methods that would originally pass may be considered as “not runnable” in our

current corpus (e.g., when the test method compares a variable with a string literal).
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Table 2.1: Statistics of our test completion corpus. #proj = number of projects;
#test = number of test method; #stmt = number of statements; len(test) = average
number of tokens in test method; len(MUT) = average number of tokens in method
under test.

#proj #test #stmt len(test) len(MUT)

All 1,270 130,934 645,633 79.57 40.88
Training 1,163 120,521 584,924 79.58 40.61
Validation 43 5,413 30,515 73.24 45.09
Evaluation 64 5,000 30,194 86.26 42.85

Evaluation, runnable subset 55 4,223 25,074 83.17 42.87
Evaluation, oracle subset 61 4,212 4,212 92.59 40.90
Evaluation, oracle-runnable subset 51 3,540 3,540 89.19 40.54

2.6 Experiments Setup

We evaluate TeCo by answering the following research questions:

RQ1: What is the performance of TeCo on the test completion task and how does

it compare to baselines?

RQ2: On the runnable subset of evaluation set, how frequently can TeCo predict a

compilable and runnable next statement?

RQ3: What is the performance of TeCo on test oracle generation, which is a sub-

task of test completion, and how does it compare to prior work?

RQ4: How does reranking by execution help with more accurately predicting the

next statement?

RQ5: How does each kind of code semantics help with more accurately predicting

the next statement, and how complementary are different kinds of code semantics?

To answer these questions, we set up an experiment to evaluate TeCo and

baseline models on our test completion corpus. We train each model on the training

and validation sets (validation set is used for tuning hyper-parameters of the model
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and early stopping2), apply the model to predict each statement of each test method

in the evaluation set (or subsets of the evaluation set), and measure the quality of the

prediction via a number of evaluation metrics, both intrinsically and extrinsically.

All models are trained and evaluated on a cluster of machines each equiped

with 2x Intel(R) Xeon(R) E5-2620 v4 @ 2.10GHz CPUs, 4x NVidia 1080-TI GPUs,

and 128GB RAM. We ran each experiment three times with different random seeds

and report average values. When comparing models, we conducted statistical signif-

icance tests using bootstrap tests [24] with a 95% confidence level.

We next describe the TeCo models (Section 2.6.1) and baseline models (Sec-

tion 2.6.2) used in the experiments, the subsets of the evaluation set for computing

compilable and runnable metrics and evaluating on the test oracle generation task

(Section 2.6.3), and the evaluation metrics (Section 2.6.4).

2.6.1 TeCo Models

We run a TeCo model that uses all six kinds of code semantics and with

reranking by test execution. To study RQ4, we run a TeCo-noRr model that uses

the same code semantics but does not use reranking. To study RQ5, we run six TeCo

models with only one kind of code semantics at a time, which we call TeCo-KIND

(e.g., TeCo-S1 only uses S1).

2.6.2 Baseline Models

We compare our TeCo models to the following baseline models that only use

syntax-level data.

2Early stopping is a common strategy to mitigate overfitting in training an ML model by mon-
itoring the model’s performance on both the training set and the validation set and halting the
training if the model stops improving on the validation set even if it improves on the training set.
If early stopping is not used, the model is fully trained to maximize its performance on the training
set, but may have bad performance on a separate set (e.g., evaluation set). In our experiments, we
set an early stopping threshold of 3, which means the training is halted if the model does not obtain
smaller loss on the validation set for 3 consecutive checkpoints.
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CodeT5 [206] is a pre-trained encoder-decoder transformer model for code-related

tasks, and is built on top of Google’s popular T5 framework [171]. CodeT5 was pre-

trained on eight commonly used programming languages (including Java) using both

mask language modeling and identifier name recovering tasks. We fine-tune TeCo

models based on CodeT5. As such, we compare to a baseline CodeT5 model that is

fine-tuned on our test completion corpus using syntax-level data. For completeness,

we also compare to a CodeT5-noFt that is only pre-trained and not fine-tuned.

CodeGPT [125] is a pre-trained decoder-only transformer model built on GPT-

2 [170]. Svyatkovskiy et al. [196] trained and evaluated a very similar model (which

is not publicly available) for code completion. We compare to a CodeGPT model that

is pre-trained on natural language and Java code (i.e., the java-adapted version), and

then fine-tuned on our test completion corpus using syntax-level data. As CodeGPT

tends to generate longer code than a statement (without generating the ⟨/s⟩ subtoken

to stop the generation), we slightly modify its decoding algorithm to terminate upon

generating the first ‘;’ subtoken for the test completion task.

Codex [40] is a pre-trained decoder-only transformer model built on GPT-3 [34].

At the time of experiment, the only way of using Codex was through OpenAI’s

API3, and fine-tuning Codex was not possible. We compare to the largest pre-trained

Codex with 12B parameters (code-davinci-002); the pre-training dataset of Codex is

unknown, but usually perceived as all publicly available code from GitHub [40, 129],

which is much larger than the pre-training dataset of CodeT5 and CodeGPT. We use

Codex to perform test completion in the zero-shot learning setup [104], i.e., providing

Codex with a prompt that contains the method under test, test method signature,

and prior statements, and letting it generate the next statement. Because Codex is

pre-trained to perform code completion, the prompt needs to be carefully designed as

a code fragment to be completed. Figure 2.6 illustrates the prompt format we used.

3https://platform.openai.com/docs/guides/code, which we accessed in March 2023; unfor-
tunately, this API for using Codex has been deprecated at the time of writing.
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1 public GMOperation addImage(final File file) {

2 if (file == null) {

3 throw new IllegalArgumentException("file must be defined");

4 }

5 getCmdArgs().add(file.getPath());

6 return this;

7 }

8

9 // Here is a test for the above method. Please complete the next statement of the test

10 @Test public void addImage_ThrowsException_WhenFileIsNull() throws Exception {

11 exception.except(IllegalArgumentException.class);

12 // Please compete the next statement:

Figure 2.6: The prompt format we designed for using Codex to perform test comple-
tion, including the method under test, test method signature, prior statements, and
some comments to guide the model.

We configure Codex to generate until seeing the first ‘;’, similar to the way we used

CodeGPT. Because the inference time of Codex is quite high, we configure Codex to

only generate the top-1 next statement using the greedy decoding algorithm. Running

Codex on our evaluation set (with 30,194 statements) took 18 hours.

Test oracle generation is the task of generating the assertion statement given

the code under test (including the method under test), test method signature, and

prior statements before the assertion statement. When studying this task, we addi-

tionally compare to the following two deep learning baseline models for test oracle

generation developed in prior work, both of which only use syntax-level data. Fol-

lowing prior work that proposed the baseline models, we only consider generating the

first assertion statement in each test method.

ATLAS [207] is an RNN encoder-decoder model for test oracle generation. We used

the “raw model” version of it, i.e., that does not abstract out the identifiers in code.

TOGA [55] is a transformer encoder-only model for classifying the suitability of an

assertion statement for an incomplete test method without assertions. It can be used

for test oracle generation by first generating a set of assertion statements and then

using the model to rank them and select the best one. The ranking model is initialized

from CodeBERT [60], which is also pre-trained on the CodeSearchNet corpus [91].
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For all baseline models, we use the default hyper-parameters and training

configurations recommended by the authors. We fine-tune CodeT5 and CodeGPT

on the entire training and validation set of our corpus. We train/fine-tune ATLAS

and TOGA on a subset of our training and validation set that only predicts the first

assertion statement in each test method, which contains 92,567 statements and 3,050

statements, respectively.

2.6.3 Subsets of the Evaluation Set

To study the ability of models in predicting a compilable and runnable next

statement, we evaluate models on the runnable subset. That is, the subset of the

evaluation set where the gold (i.e., developer-written) statement is runnable. We

follow the same procedure to check if the gold statement is runnable as described in

Section 2.4.4. Not all gold statements can be successfully executed because of the

difficulties in setting up the proper runtime environment, such as missing resources

(that may need to be downloaded or generated via other commands), requiring other

runtime environments than Java, etc. Our runnable subset contains 25,074 statements

(83.04% of all statements in the evaluation set) from 4,223 test methods.

To study the test oracle generation task, we evaluate models on the oracle

subset: the subset of the evaluation set where the statement to generate is the first

assertion statement in the test method, which contains 4,212 statements. To com-

pute compilable and runnable metrics on the test oracle generation task, we evaluate

models on the oracle-runnable subset: the subset of the oracle subset where the gold

statement is runnable, which contains 3,540 statements.

Table 2.1 (bottom part) shows the statistics of the runnable subset, oracle

subset, and oracle-runnable subset subsets of the evaluation set, including number of

projects and test methods (after removing the projects and test methods that do not

have any statement that belongs to the subset), number of statements, and average

length of test methods and methods under test.
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2.6.4 Evaluation Metrics

(1) Lexical-level metrics : We use the following metrics to measure how close

the predicted statements are to the gold statements; these metrics have been fre-

quently used in prior work on code generation and comment generation [89, 94, 109,

118]:

Exact-match accuracy (XM) is the percentage of predicted statements matches

exactly with the gold. This metric is the most strict one; each point of improvement

directly entails a larger portion of code that is both syntactically and semantically

correct, yet it does not take into account paraphrases or give any partial credit.

Top-10 accuracy (Acc@10) is the percentage of any top-10 predicted statements

matches exactly with the gold. This metric evaluates the use case where the developer

can see and select from the top-10 predictions of the model.

BLEU [160] calculates the number of n-grams (consecutive n subtokens) in the pre-

diction that also appear in the gold; specifically, we compute the 1∼4-grams overlap

between the subtokens in the prediction and the subtokens in the gold, averaged

between 1∼4-grams with smoothing method proposed by Lin and Och [119].

CodeBLEU [176] is an improved version of BLEU adapted for code. It is a combi-

nation of the traditional BLEU, the BLEU if only considering keywords, syntactical

AST match, and semantic data-flow match.

Edit similarity (EditSim) = 1 - Levenshtein edit distance, where the Levenshtein

edit distance measures the amount of single-character edits (including insertion, sub-

stitution, or deletion) that need to be made to transform the prediction to the gold,

normalized by the maximum number of characters in the prediction and the gold.

This metric was proposed and used in prior work on code completion [196].

ROUGE [120] measures the overlap between the prediction subtokens and the gold

subtokens based on the Longest Common Subsequence statistics, using F1 score.
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(2) Functional correctness : The aforementioned metrics only capture the lex-

ical similarity between the prediction against the gold, but the gold statement may

not be the only correct solution for competing the next statement. Namely, the pre-

diction can be functionally correct despite being different from the gold statement.

To measure the functional correctness, we additionally use the following metrics:

%Compile is the percentage of the predicted statements that are compilable when

appended to the incomplete test.

%Run is the percentage of the predicted statements that are compilable and runnable

when appended to the incomplete test, without incurring assertion failures or runtime

errors.

Note that %Compile and %Run are over-estimations of the functional correct-

ness: %Compile detects only compilation errors; %Run is more strict and checks for

runtime errors including unexpected exceptions and assertion failures. Neither metric

considers whether the underlying logic of the code is meaningful to developers, which

may need to be evaluated with a costly user study. Prior work has used a similar

methodology to evaluate the functional correctness of text-to-code transduction by

running generated code with test cases [40], which was performed on a small dataset

because of the difficulty in collecting manually labeled data. Thanks to the executable

nature of tests, we are able to design the two automatic functional correctness metrics

for a large corpus.

2.7 Results

This section presents the results of TeCo and baseline models on the test

completion task, and answers the research questions from Section 2.6.
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Table 2.2: Test completion performance of TeCo and baseline models. The best
number for each metric is bolded. In each table, numbers marked with the same
greek letter prefix are not statistically significantly different.

(a) On the evaluation set.

Model XM Acc@10 BLEU CodeBLEU EditSim ROUGE

CodeT5 13.57 24.11 38.33 33.88 60.81 62.40
CodeT5-noFt 0.00 0.00 0.00 3.36 1.68 0.02
CodeGPT 12.20 22.67 36.30 31.84 59.09 61.10
Codex 12.69 N/A 34.53 29.91 58.08 56.04

TeCo 17.61 27.20 42.01 37.61 63.49 65.23

(b) On the runnable subset.

Model %Compile %Run XM Acc@10 BLEU CodeBLEU EditSim ROUGE

CodeT5 54.84 17.62 14.38 25.39 39.26 34.55 61.36 63.15
CodeT5-noFt 0.00 0.00 0.00 0.00 0.00 3.35 1.65 0.03
CodeGPT 53.77 15.13 12.95 24.03 37.19 32.46 59.75 61.90
Codex 38.80 19.12 12.88 N/A 34.89 30.12 58.44 56.58

TeCo 76.22 28.63 18.96 28.40 43.15 38.45 64.12 66.09

(c) On the oracle subset.

Model XM Acc@10 BLEU CodeBLEU EditSim ROUGE

CodeT5 8.45 24.04 39.03 31.03 66.50 66.63
CodeT5-noFt α0.00 0.00 0.00 1.18 1.86 0.01
CodeGPT 10.56 27.19 40.91 33.33 67.63 67.94
Codex 12.30 N/A 35.09 30.24 59.59 57.67
ATLAS α0.21 0.66 21.55 13.39 54.06 50.70
TOGA 9.01 9.01 25.46 24.73 29.60 28.06

TeCo 16.44 27.41 43.09 35.88 68.05 68.71

(d) On the oracle-runnable subset.

Model %Compile %Run XM Acc@10 BLEU CodeBLEU EditSim ROUGE

CodeT5 44.45 16.87 8.79 24.37 40.26 32.23 67.08 67.42
CodeT5-noFt 0.00 0.00 α0.00 0.00 0.00 1.26 1.87 0.01
CodeGPT 47.39 16.13 10.41 28.17 41.56 33.79 67.78 68.43
Codex 39.46 20.73 12.15 N/A 35.05 30.12 59.79 57.86
ATLAS 3.62 1.45 α0.23 0.68 21.81 13.56 54.19 50.87
TOGA 25.61 9.37 9.10 9.10 26.51 25.74 31.00 29.38

TeCo 67.93 30.29 17.37 27.39 44.27 36.98 68.43 69.35
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2.7.1 RQ1: Performance of TeCo vs. Baseline Models

Table 2.2a shows the results of TeCo and baseline models on solving the test

completion task. Our model, TeCo, significantly outperforms all baseline models on

all metrics. TeCo achieves 17.61% exact-match accuracy, which is 29% higher than

the best baseline model, CodeT5’s 13.57%. This indicates that using code semantics

and reranking by execution can greatly improve deep learning model’s performance

on test completion.

Both CodeT5-noFt and Codex are not fine-tuned. CodeT5-noFt is not capable

of solving test completion task at all, as it was optimized to solve different tasks during

pre-training and does not have the domain knowledge of the input-output format of

the test completion task. On the contrary, Codex achieves performance on par with

the fine-tuned baseline CodeT5, because it is a larger model and has been pre-trained

on much more data.

CodeGPT has shown to be effective on the task of code completion [125, 196],

where the primary goal is to continue generating code similar to the context code.

However, it performs slightly worse than the encoder-decoder baseline CodeT5 on

test completion, because the task requires generating statement in the test method

which has different style than the method under test in the provided context.

To summarize, the following designs can improve the model’s performance on

test completion: integration with execution (comparing TeCo vs. CodeT5), scal-

ing up the model size and pre-training data (comparing Codex vs. CodeT5-noFt),

fine-tuning on the test completion dataset (comparing CodeT5 vs. CodeT5-noFt),

and using encoder-decoder architecture instead of decoder-only architecture (com-

paring CodeT5 vs. CodeGPT). We believe these improvements are mostly orthog-

onal, which means TeCo’s performance can be further improved by replacing its

underlying model from CodeT5 to a larger pre-trained model.
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2.7.2 RQ2: Functional Correctness

Table 2.2b shows the results of TeCo and baseline models on the runnable

subset, with %Compile and %Run metrics that measure the functional correctness

of the generated statements. Our model, TeCo, can generate runnable statements

28.63% of the time, and compilable statements 76.22% of the time, which are much

higher than the best baseline model’s 19.12% (Codex) and 54.84% (CodeT5). On

this runnable subset, TeCo also outperforms all baseline models on other metrics

measuring lexical similarity.

2.7.3 RQ3: Performance on Test Oracle Generation

Tables 2.2c and 2.2d show the results of the test oracle generation sub-task,

on the oracle subset and the oracle-runnable subset, respectively. TeCo significantly

improves the exact-match accuracy on this task by a large margin (by 33%), from

12.30% for the best baseline (Codex), to ours 16.44%.

TOGA, the best model designed specifically for test oracle generation in prior

work, achieves 9.01%, which is on par with CodeT5. However, it is worse than

CodeT5 on other metrics that consider partial matches. This is because TOGA is

a classification model that ranks a set of assertion statement candidates generated

using heuristics, and when the gold statement is not in the set, the model fails to

correctly rank a sub-optimal candidate.

2.7.4 RQ4: Improvements from Reranking by Execution

Table 2.3 shows the results of TeCo-noRr (the top-10 accuracy for TeCo-

noRr is always the same as TeCo, because the reranking is performed on top-10

predictions, thus we did not include this metric in the table).

Comparing TeCo with TeCo-noRr on the evaluation set (Table 2.3a), rerank-

ing by execution alone contributes to 2 points in exact-match accuracy. However, the

improvements over other similarity metrics, which take into account partial matches,
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Table 2.3: Results for TeCo without and with reranking by execution. The best
number for each metric is bolded. The differences between models for each metric
are statistical significant.

(a) On the evaluation set.

Model XM BLEU CodeBLEU EditSim ROUGE

CodeT5 13.57 38.33 33.88 60.81 62.40
TeCo-noRr 15.25 40.84 36.34 62.92 64.71
TeCo 17.61 42.01 37.61 63.49 65.23

(b) On the runnable subset.

Model %Compile %Run XM BLEU CodeBLEU EditSim ROUGE

CodeT5 54.84 17.62 14.38 39.26 34.55 61.36 63.15
TeCo-noRr 60.80 19.49 15.99 41.64 36.82 63.38 65.42
TeCo 76.22 28.63 18.96 43.15 38.45 64.12 66.09

(c) On the oracle subset.

Model XM BLEU CodeBLEU EditSim ROUGE

CodeT5 8.45 39.03 31.03 66.50 66.63
TeCo-noRr 9.92 40.81 32.90 67.32 67.92
TeCo 16.44 43.09 35.88 68.05 68.71

(d) On the oracle-runnable subset.

Model %Compile %Run XM BLEU CodeBLEU EditSim ROUGE

CodeT5 44.45 16.87 8.79 40.26 32.23 67.08 67.42
TeCo-noRr 48.13 18.45 9.62 41.55 33.44 67.57 68.41
TeCo 67.93 30.29 17.37 44.27 36.98 68.43 69.35

are smaller. This indicates that reranking by execution is effective in prioritizing the

exact correct generated statement than other non-runnable candidates most of the

times, but in a few cases it may prioritize runnable candidates that are less similar

to the gold statement than the original top-1. TeCo-noRr still significantly outper-

forms CodeT5 on all metrics. On the runnable subset (Table 2.3b), TeCo improves

both %Compile and %Run over TeCo-noRr by large margins, which shows that

reranking by execution is an effective strategy for improving the quality of generated

statements.
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Table 2.4: Results for TeCo models with only one kind of code semantics on the
evaluation set. The best number for each metric is bolded.

(a) On the evaluation set.

Model XM Acc@10 BLEU CodeBLEU EditSim ROUGE

CodeT5 13.57 24.11 38.33 33.88 60.81 62.40

TeCo-S1 13.88 24.93 39.12 34.66 61.58 63.51
TeCo-S2 14.06 25.11 39.56 35.17 62.20 63.92
TeCo-S3 14.04 24.40 38.81 34.24 61.21 62.87
TeCo-S4 14.44 25.55 39.39 35.00 61.63 63.40
TeCo-S5 14.05 24.78 38.74 34.34 61.26 63.00
TeCo-S6 14.13 24.74 38.70 34.36 60.86 62.52

(b) On the oracle subset.

Model XM Acc@10 BLEU CodeBLEU EditSim ROUGE

CodeT5 8.45 24.04 39.03 31.03 66.50 66.63

TeCo-S1 8.86 24.37 38.03 29.93 65.59 65.95
TeCo-S2 8.23 23.69 38.13 30.27 65.52 65.98
TeCo-S3 8.72 23.57 39.90 31.96 67.20 67.44
TeCo-S4 8.14 23.84 38.54 30.77 65.59 65.92
TeCo-S5 8.43 24.10 38.67 30.85 66.17 66.23
TeCo-S6 9.81 25.47 39.88 32.20 66.89 66.97

Reranking by execution ended up being very important for improving perfor-

mance on the task of test oracle generation, as shown on the oracle subset (Table 2.3c)

and the oracle-runnable subset (Table 2.3d). For example, TeCo outperforms TeCo-

noRr by 6–8 points in exact-match accuracy and 12 points in %Run. This is because

logical errors in assertion statements can be easily found by execution (e.g., generating

the wrong expected value will cause an assertion to fail).

2.7.5 RQ5: Comparisons of Code Semantics

Tables 2.4a and 2.4b show the results of the TeCo models with only one

kind of code semantics, comparing with the strongest baseline model CodeT5, on the

full evaluation set and the oracle subset, respectively. We did not perform statistical

significance tests for the results here as the performances of the models are too similar.
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Each model outperforms CodeT5 on at least one metric, meaning that each code

semantics provides some information useful for test completion. In Table 2.4a, TeCo-

S2 (absent types) is the best model in terms of BLEU, CodeBLEU, EditSim and

ROUGE metrics, and TeCo-S4 (setup and teardown) is the best model in terms of

exact-match accuracy and top-10 accuracy, which indicates that these two kinds of

code semantics are relatively more important than others. Interestingly, in Table 2.4b,

the models that achieved the best performance among single-data models changed:

TeCo-S3 (unset fields) is the best model in terms of BLEU, EditSim, and ROUGE,

and TeCo-S6 (similar statement) is the best model in terms of exact-match accuracy,

top-10 accuracy, and CodeBLEU. Thus, different kinds of code semantics provide

complementary information for test completion.

2.7.6 Qualitative Analysis

We perform a small qualitative analysis of TeCo’s completed statements com-

pared to baseline models using the examples shown in tables 2.5, 2.6 and 2.7. For each

example, we show the method under test, test method signature, prior statements,

the gold statement, and the statement generated by {TeCo, CodeT5, CodeGPT,

and Codex}.

In the example shown in Table 2.5 (which is the same example used in fig-

ures 2.1 and 2.3), TeCo is able to generate the correct next statement thanks to the

code semantics (S2) absent types and (S4) setup and teardown, as we pointed out

in Section 2.3. On the contrary, CodeT5 generates a wrong statement that repeats

some part of the setup method and does not use File correctly; and CodeGPT does

not correctly use the sut field prepared in the setup method. Codex generates a

code comment instead of a statement, as it was not fine-tuned to perform the test

completion task.

In the example shown in Table 2.6, TeCo generates the correct next state-

ment, primarily because the statement is included in the code semantics (S6) similar
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Table 2.5: Example of test completion results by TeCo and baseline
models, for addImage ThrowsException WhenFileIsNull in sharneng/gm4java,
GMOperationTest.java.

Method under test

public GMOperation addImage(final File file) {

if (file == null) {

throw new IllegalArgumentException("STR");

}

getCmdArgs().add(file.getPath());

return this;

}

Test method signature

@Test public void addImage_ThrowsException_WhenFileIsNull() throws Exception

Prior statements

exception.expect(IllegalArgumentException.class);

Gold

sut.addImage((File) null);

TeCo CodeBLEU = 100

sut.addImage((File) null);

CodeT5 CodeBLEU = 13

new GMOperation().addImage(null);

CodeGPT CodeBLEU = 9

command.addImage(new File("STR"));

Codex CodeBLEU = 1

// rpcClient.shutdown() ;

statement (i.e., the statement that appears the most of the times after the prior

statement ContainerHandler containerHandle = getContainerHandler() in the project is

PodTemplateHandler podTemplateHandler = newPodTemplateHandler(containerHandler)). The

baseline models generate incorrect statements without knowing this information.

In the example shown in Table 2.7, the statement to be completed is an asser-

tion statement that should check whether count equals to 1. CodeT5 and CodeGPT

use the asserThat API, which seems plausible (and indeed compiles) but is not

runnable. Codex again generates a code comment due to lack of fine-tuning. TeCo

is able to generate the correct assertion statement using the assertEquals API.
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Table 2.6: Example of test completion results by TeCo and base-
line models, for statefulSetHandlerWithoutControllerTest in
fabric8io/fabric8-maven-plugin, StatefulSetHandlerTest.java.

Method under test

public StatefulSet getStatefulSet(ResourceConfig config, List<ImageConfiguration> images) {

return new StatefulSetBuilder().withMetadata(createStatefulSetMetaData(config))

.withSpec(createStatefulSetSpec(config, images)).build();

}

Test method signature

@Test(expected=IllegalArgumentException.class) public void statefulSetHandlerWithoutControllerTest()

Prior statements

ContainerHandler containerHandler = getContainerHandler();

Gold

PodTemplateHandler podTemplateHandler = new PodTemplateHandler(containerHandler);

TeCo CodeBLEU = 100

PodTemplateHandler podTemplateHandler = new PodTemplateHandler(containerHandler);

CodeT5 CodeBLEU = 19

StatefulSet statefulSet = new StatefulSetBuilder()

.withMetadata(createStatefulSetMetaData(config, images))

.withSpec(createStatefulSetSpec(config, images)).build();

CodeGPT CodeBLEU = 2

containerHandler.getStatefulSet(new DefaultResourceConfigBuilder().build(),

Collections.<ImageConfiguration>emptyList());

Codex CodeBLEU = 19

Map<String, String> actualA = mergeMaps(mapA, mapB);

2.8 Limitations

We discuss several limitations of our work and the future work inspired by

those limitations.

Usability. We envision our models being integrated into an IDE. At any point, a

user would be able to see top-k results from our models and potentially decide to use

one of the predictions. This is similar to email completion that has recently been

integrated into several popular web-based email clients, e.g., GMail.

Structured representation. Currently we do not considering using any structured
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Table 2.7: Example of test completion results by TeCo and base-
line models, for shouldIndexVeryLongDescriptionWithSingleField in
orientechnologies/orientdb, LuceneSortTest.java.

Method under test

default Stream<OResult> stream() {

return StreamSupport.stream(this, false).onClose(() -> this.close());

}

Test method signature

@Test public void shouldIndexVeryLongDescriptionWithSingleField() throws Exception

Prior statements

db.save(new ODocument("STR").field("STR", DESCRIPTION));

db.command(new OCommandSQL("STR")).execute();

long count = db.query("STR").stream().count();

Gold

Assert.assertEquals(1, count);

TeCo CodeBLEU = 100

Assert.assertEquals(1, count);

CodeT5 CodeBLEU = 6

assertThat(count).isEqualTo(1);

CodeGPT CodeBLEU = 6

assertThat(count).isEqualTo(1);

Codex CodeBLEU = 1

// doc.save() ;

representation of code, e.g., abstract syntax trees (ASTs). Such a representation

could enhance performance of our models and enable a quick check of validity of

generated code. We leave this for future work.

Testing frameworks. We focus on tests written in the JUnit style, which is the most

popular testing framework among Java projects. Future work can support advanced

testing features in JUnit (e.g., parameterized tests) and other testing frameworks

(e.g., TestNG).

Order of assertion statements. Multiple assertion statements in a test method are

usually unordered, i.e., can be written and executed in any order. Our work currently
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do not consider this, which means test completion requires the model to generate

assertion statements in the same order as they appear in the developer-written test

methods, and test oracle generation requires the model to generate only the first

assertion statement even if there are many (following prior work that defined this

task [55, 207]). Future work should consider alternative orders of assertion statements

both during training (which should improve our model’s performance) and evaluation.

2.9 Summary

We introduced an idea of designing ML models for code-related tasks with

code semantics inputs and reranking based on test execution outcomes. Based on

this idea, we developed a concrete model, named TeCo, targeting a novel task: test

completion. We evaluated TeCo on a new corpus, containing 130,934 methods and

101,965 executable methods. Our results show that TeCo significantly outperforms

the state-of-the-art on code completion and test oracle generation tasks, across a

number of evaluation metrics. We believe that TeCo is only a starting point in the

exciting area of ML for code with code semantics and execution data.
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Chapter 3: Deep Generation of Coq Lemma

Names Using Elaborated Terms

Coding conventions for naming, spacing, and other essentially stylistic proper-

ties are necessary for developers to effectively understand, review, and modify source

code in large software projects. Consistent conventions in verification projects based

on proof assistants, such as Coq, increase in importance as projects grow in size and

scope. While conventions can be documented and enforced manually at high cost,

emerging approaches automatically learn and suggest idiomatic names in Java-like

languages by applying statistical language models on large code corpora. However,

due to its powerful language extension facilities and fusion of type checking and com-

putation, Coq is a challenging target for automated learning techniques. We present

novel generation models for learning and suggesting lemma names for Coq projects.

Our models, based on multi-input neural networks, are the first to leverage syntactic

and semantic information from Coq’s lexer (tokens in lemma statements), parser (syn-

tax trees), and kernel (elaborated terms) for naming; the key insight is that learning

from elaborated terms can substantially boost model performance. We implemented

our models in a toolchain, dubbed Roosterize, and applied it on a large corpus

of code derived from the Mathematical Components family of projects, known for

its stringent coding conventions. Our results show that Roosterize substantially

outperforms baselines for suggesting lemma names, highlighting the importance of

using multi-input models and elaborated terms.1

1Parts of this chapter are published at IJCAR 2020 [143] and ICSE DEMO 2021 [144]. Compared
to the version published at the conference, this chapter expands the evaluation to a larger corpus
and adds an ablation study on the tree chopping algorithms.
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3.1 Overview

Programming language source code with deficient coding conventions, such as

misleading function and variable names and irregular spacing, is difficult for develop-

ers to effectively understand, review, and modify [16, 132, 192]. Code with haphazard

adherence to conventions may also be more bug-prone [30]. The problem is exacer-

bated in large projects with many developers, where different source code files and

components may have inconsistent and clashing conventions.

Many open source software projects manually document coding conventions

that contributors are expected to follow, and maintainers willingly accept fixes of

violations to such conventions [8]. Enforcement of conventions can be performed by

static analysis tools [72, 151]. However, such tools require developers to write precise

checks for conventions, which are tedious to define and often incomplete. To address

this problem, researchers have proposed techniques for automatically learning coding

conventions for Java-like languages from code corpora by applying statistical language

models [11]. These models are applicable because code in these languages has high

naturalness [83], i.e., statistical regularities and repetitiveness. Learned conventions

can then be used to, e.g., suggest names in code.

Proof assistants, such as Coq [25], are increasingly used to formalize results in

advanced mathematics [70, 71] and develop large trustworthy software systems, e.g.,

compilers, operating systems, file systems, and distributed systems [39, 112, 213].

Such projects typically involve contributions of many participants over several years,

and require considerable effort to maintain over time. Coding conventions are essen-

tial for evolution of large verification projects, and are thus highly emphasized in the

Coq libraries HoTT [87] and Iris [92], in Lean’s Mathlib [17], and in particular in

the influential Mathematical Components (MathComp) family of Coq projects [42].

Extensive changes to adhere to conventions, e.g., on naming, are regularly requested

by MathComp maintainers for proposed external contributions [130], and its conven-

tions have been adopted, to varying degrees, by a growing number of independent
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Coq projects [2, 23, 57, 189].

We believe these properties make Coq code related to MathComp an attrac-

tive target for automated learning and suggesting of coding conventions, in partic-

ular, for suggesting lemma names [14]. However, serious challenges are posed by,

on the one hand, Coq’s powerful language extension facilities and fusion of type

checking and computation [22], and on the other hand, the idiosyncratic conven-

tions used by Coq practitioners compared to software engineers. Hence, although

suggesting lemma names is similar in spirit to suggesting method names in Java-like

languages [214], the former task is more challenging in that lemma names are typically

much shorter than method names and tend to include heavily abbreviated terminol-

ogy from logic and advanced mathematics; a single character can carry significant

information about a lemma’s meaning. For example, the MathComp lemma names

card support normedTI (“cardinality of support groups of a normed trivial intersec-

tion group”) and extprod mulgA (“associativity of multiplication operations in ex-

ternal product groups”) concisely convey information on lemma statement structure

and meaning through both abbreviations and suffixes, as when the suffix A indicates

an associative property.

In this paper, we present novel generation models for learning and suggesting

lemma names for Coq verification projects that address these challenges. Specifically,

based on our knowledge of Coq and its implementation, we developed multi-input

encoder-decoder neural networks for generating names that use information directly

from Coq’s internal data structures related to lexing, parsing, and type checking. In

the context of naming, our models are the first to leverage the lemma statement as

well as the corresponding syntax tree and elaborated term (i.e., execution data which

we call kernel tree) processed by Coq’s kernel [51].

We implemented our models in a toolchain, dubbed Roosterize, which we

used to learn from a high-quality Coq corpus derived from the MathComp family.

We then measured the performance of Roosterize using automatic metrics, finding
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that it significantly outperforms baselines. Using our best model, we also suggested

lemma names for the PCM library [138, 189], which were manually reviewed by the

project maintainer with encouraging results.

To allow Roosterize to use information directly from Coq’s lexer, parser, and

kernel, we extended the SerAPI library [63] to serialize Coq tokens, syntax trees, and

kernel trees into a machine-readable format. This allowed us to achieve robustness

against user-defined notations and other extensions to Coq syntax. Thanks to our

integration with SerAPI and its use of metaprogramming, we expect our toolchain to

only require modest maintenance as Coq evolves.

We make the following key contributions in this work:

• Models: We propose novel generation models based on multi-input neural net-

works to learn and suggest lemma names for Coq verification projects. A key prop-

erty of our models is that they combine data from several Coq phases, including

lexing, parsing, and term elaboration.

• Corpus: Advised by MathComp developers, we constructed a corpus of high-

quality Coq code for learning coding conventions, totaling over 297k LOC taken

from 21 core projects. We believe that our corpus can enable development of many

novel techniques for Coq based on statistical language models.

• Toolchain: We implemented a toolchain, dubbed Roosterize, which suggests

lemma names for a given Coq project. We envision Roosterize being useful

during the review process of proposed contributions to a Coq project.

• Evaluation: We performed several experiments with Roosterize to evaluate our

models using our corpus. Our results show that Roosterize performs signifi-

cantly better than several strong baselines, as measured by standard automatic

metrics [160]. The results also reveal that our novel multi-input models, as well as

the incorporation of kernel trees, are important for prediction quality. Finally, we

performed a manual quality analysis by suggesting lemma names for a medium sized
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Coq project [138], evaluated by its maintainer, who found many of the predictions

useful for improving naming consistency.

We provide artifacts related to our toolchain and corpus at:

https://github.com/EngineeringSoftware/roosterize.

3.2 Background

This section gives brief background related to Coq and the Mathematical Com-

ponents (MathComp) family of projects, as well as the SerAPI library.

Coq and Gallina. Coq is a proof assistant based on dependent types, implemented

in the OCaml language [25, 45]. For our purposes, we view Coq as a programming

language and type-checking toolchain. Specifically, Coq files are sequences of sen-

tences, with each sentence ending with a period. Sentences are essentially either

(a) commands for printing and other output, (b) definitions of functions, lemmas,

and datatypes in the Gallina language [47], or (c) expressions in the Ltac tactic lan-

guage [53]. We will refer to definitions of lemmas as in (b) as lemma sentences. Coq

internally represents a lemma sentence both as a sequence of tokens (lexing phase)

and as a syntax tree (parsing phase).

In the typical workflow for a Coq-based verification project, users write data-

types and functions and then interactively prove lemmas about them by executing

different tactic expressions that may, e.g., discharge or split the current proof goal.

Both statements to be proved and proofs are represented internally as terms produced

during an elaboration phase [51]; we refer to elaborated terms as kernel trees. Hence,

as tactics are successfully executed, they gradually build a kernel tree. The Qed com-

mand sends the kernel tree for a tentative proof to Coq’s kernel for final certification.

We call a collection of Ltac tactic sentences that build a kernel tree a proof script.

Figure 3.1 shows a Coq lemma and its proof script, taken verbatim from a

development on the theory of regular languages [57]. Line 1 contains a lemma sentence
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1 Lemma mg_eq_proof L1 L2 (N1 : mgClassifier L1) : L1 =i L2 -> nerode L2 N1.

2 Proof. move => H0 u v. split => [/nerodeP H1 w|H1].

3 - by rewrite -!H0.

4 - apply/nerodeP => w. by rewrite !H0.

5 Qed.

Figure 3.1: Coq lemma on the theory of regular languages, including proof script.

with the lemma name mg_eq_proof, followed by a lemma statement (on the same line)

involving the arbitrary languages L1 and L2, i.e., typed variables that are implicitly

universally quantified. When Coq processes line 5, the kernel certifies that the kernel

tree generated by the proof script (lines 2 to 4) has the type (is a proof) of the kernel

tree for the lemma statement on line 1.

MathComp and lemma naming. The MathComp family of Coq projects, in-

cluding in particular the MathComp library of general mathematical definitions and

results [128], grew out of Gonthier’s proof of the four-color theorem [70], with substan-

tial developments in the context of the landmark proof of the odd order theorem in

abstract algebra [71]. The MathComp library is now used in many projects outside of

the MathComp family, such as in the project containing the lemma in Figure 3.1 [58].

MathComp has documented naming conventions for two kinds of entities: (1) vari-

ables and (2) functions and lemmas [42]. Variable names tend to be short and simple,

while function and lemma names can be long and consist of several name components,

typically separated by an underscore, but sometimes using CamelCase. Examples

of definition and lemma names in Figure 3.1 include mg_eq_proof, mgClassifier,

nerode, and nerodeP. Note that lemma names sometimes have suffixes to indicate

their meaning, such as P in nerodeP which says that the lemma is a characteristic

property. Coq functions tend to be named based on corresponding function definition

bodies rather than just types (of the parameters and return value), analogously to

methods in Java [122]. In contrast, MathComp lemma names tend to be based solely

on the lemma statement. Hence, a more suitable name for the lemma in Figure 3.1

is mg_eq_nerode.

58



Lemma mg_eq_proof L1 L2 (N1 : mgClassifier L1) : L1 =i L2 -> nerode L2 N1 . sentence

(Sentence (( IDENT Lemma )(IDENT mg_eq_proof) (IDENT L1)(IDENT L2)

(KEYWORD"(")(IDENT N1)(KEYWORD :)(IDENT mgClassifier)

(IDENT L1)(KEYWORD")")(KEYWORD :)(IDENT L1)(KEYWORD =i)(IDENT L2)

(KEYWORD ->)(IDENT nerode)(IDENT L2)(IDENT N1) (KEYWORD .)))

tokens

(VernacExpr ()( VernacStartTheoremProof Lemma (Id mg_eq_proof)

(((CLocalAssum(Name(Id L1))(CHole()IntroAnonymous()))

(CLocalAssum(Name(Id L2))(CHole()IntroAnonymous()))

(CLocalAssum(Name(Id N1))

(CApp(CRef(Ser Qualid(DirPath())(Id mgClassifier)))(CRef(Ser Qualid(DirPath())(Id L1))))))

(CNotation(InConstrEntrySomeLevel" -> ")

(CNotation(InConstrEntrySomeLevel" =i ")

(CRef(Ser Qualid(DirPath())(Id L1)))(CRef(Ser Qualid(DirPath())(Id L2))))

(CApp(CRef(Ser Qualid(DirPath())(Id nerode)))

(CRef(Ser Qualid(DirPath())(Id L2)))(CRef(Ser Qualid(DirPath())(Id N1)))))) ))

syntax tree

(Prod (Name (Id char)) ... (Prod (Name (Id L1)) ...

(Prod (Name (Id L2)) ... (Prod (Name (Id N1)) ...

(Prod Anonymous (App (Ref (DirPath ((Id ssrbool) (Id ssr) (Id Coq))) (Id eq mem)) ...

(Var (Id L1)) ... (Var (Id L2)))

(App (Ref (DirPath ((Id myhill nerode) (Id RegLang))) (Id nerode)) ...

(Var (Id L2)) ... (Var (Id N1))))))) )

kernel tree

Figure 3.2: Coq lemma sentence at the top, with sexps for, from just below to bottom:
tokens, syntax tree, and kernel tree; the lemma statement in each is highlighted.

SerAPI and Coq serialization. SerAPI is an OCaml library and toolchain for

machine interaction with Coq [63], which provides serialization and deserialization of

Coq internal data structures to and from S-expressions (sexps) [131]. SerAPI is im-

plemented using OCaml’s PPX metaprogramming facilities [150], which enable mod-

ifying OCaml program syntax trees at compilation time. Figure 3.2 shows the lemma

sentence on line 1 in Figure 3.1, and below it, the corresponding (simplified) sexps for

its tokens, syntax tree, and kernel tree, with the lemma statement highlighted in each

representation. Note that the syntax tree omits the types of some quantified variables,

e.g., for the types of L1 and L2, as indicated by the CHole constructor. Note also that

during elaboration of the syntax tree into the kernel tree by Coq, an implicit variable

char is added (all-quantified via Prod), and the extensional equality operator =i is
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translated to its globally unique kernel name, Coq.ssr.ssrbool.eq_mem. Hence, a

kernel tree can be much larger and contain more information than the corresponding

syntax tree.

3.3 Models

In this section, we describe our multi-input generation models for suggesting

Coq lemma names. Our models consider lemma name generation with an encoder-

decoder mindset, i.e., we use neural architectures specifically designed for transduction

tasks [193]. This family of architectures is commonly used for sequence generation,

e.g., in machine translation [20] and code summarization [109], where it has been

found to be much more effective than traditional probabilistic and retrieval-based

approaches.

3.3.1 Core Architecture

Our encoders are Recurrent Neural Networks (RNNs) that learn a deep se-

mantic representation of a given lemma statement from its tokens, syntax tree, and

kernel tree. The decoder—another RNN—generates the descriptive lemma name as

a sequence. The model is trained end-to-end, maximizing the probability of the gen-

erated lemma name given the input. In contrast to prior work in language-code tasks

that uses a single encoder [64], we design multi-input models that leverage both syn-

tactic and semantic information from Coq’s lexer, parser, and kernel. A high-level

visualization of our architecture is shown in Figure 3.3. The number of inputs to use

can be configured, for example, Figure 3.3a shows an architecture that uses all three

inputs, and Figure 3.3b shows an architecture that uses two inputs (lemma statement

and kernel tree).

Encoding. Our multi-input encoders combine different kinds of syntactic and se-

mantic information in the encoding phase. We use a different encoder for each input,

which are: lemma statement, syntax tree, and kernel tree.
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(b) With two inputs: lemma statement and kernel tree.

Figure 3.3: Core architecture of Roosterize’s multi-input encoder-decoder models.

61



Coq data structure instances can be large, with syntax trees having an average

depth of 28.03 and kernel trees 46.51 in our corpus (we provide detailed statistics in

Section 3.6). Therefore, we flatten the trees into sequences, which can be trained more

efficiently than tree encoders without performance loss [88]. We flatten the trees with

pre-order traversal, and we use “(” and “)” as the boundaries of the children of a

node. In later parts of this paper, we use syntax and kernel trees to refer to their

flattened versions. In Section 3.3.2, we introduce tree chopping to reduce the length

of the resulting sequences.

To encode lemma statements and flattened tree sequences, we use bi-direction-

al Long-Short Term Memory (LSTM) [85] networks. LSTM is a type of RNN good at

capturing long-range dependencies in a sequence, and is widely used in encoders [88].

A bi-directional LSTM learns stronger representations (than a uni-directional LSTM)

by encoding a sequence from both left to right and right to left [224].

Decoding. We use an LSTM (left to right direction only) as our decoder. To

obtain the initial hidden and cell states (hd, cd) of the decoder, we learn a unified

representation of these separate encoders by concatenating their final hidden and cell

states (hi, ci), and then applying a fully connected layer on the concatenated states:

hd = Wh · concat([hi]) + bh and cd = Wc · concat([ci]) + bc, where Wh, Wc, bh, and bc

are learnable parameters.

During training, we maximize the log likelihood of the reference lemma name

given all input sequences. Standard beam search is used to reduce the search space

for the optimal sequence of tokens. With regular decoding, at each time step the

decoder generates a new token relying on the preceding generated token, which can be

error-prone and leads to slow convergence and instability. We mitigate this problem

by performing decoding with teacher forcing [212] such that the decoder relies on

the preceding reference token. At test time, the decoder still uses the proceeding

generated token as input.

Attention. With RNN encoders, the input sequence is compressed into the RNN’s
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(Prod Anonymous (App (Ref (DirPath ((Id ssrbool) (Id ssr) (Id Coq))) (Id eq_mem )) ...

( (App (Ref ... )) ) ... ))

(Prod Anonymous (App eq_mem ... (App (Ref ... )) ... ))

chopping

Figure 3.4: Kernel tree sexp before and after chopping; chopped parts are highlighted.

final hidden states, which results in a loss of information, especially for longer se-

quences. The attention mechanism [127] grants the decoder access to the encoder

hidden and cell states for all previous tokens. At each decoder time step, an atten-

tion vector is calculated as a distribution over all encoded tokens, indicating which

token the decoder should “pay attention to”. To make the attention mechanism work

with multiple encoders, we concatenate the hidden states of the n encoders [h1, ..., hn]

and apply an attention layer on the result [199].

Initialization. Since there are no pre-trained token embeddings for Coq, we initialize

each unique token in the vocabulary with a random vector sampled from the uniform

distribution U(−0.1, 0.1). These embeddings are trained together with the model.

The hidden layer parameters of the encoders and decoders are also initialized with

random vectors sampled from the same uniform distribution.

3.3.2 Tree Chopping

While syntax and kernel trees for lemma statements can be large, not all parts

of the trees are relevant for naming. For instance, each constant reference is expanded

to its fully qualified form in the kernel tree, but the added prefixes are usually related

to directory paths and likely do not contain relevant information for generating the

name. Irrelevant information in long sequences can be detrimental to the model, since

the model would have to reason about and encode all tokens in the sequence.

To this end, we implemented chopping heuristics for both syntax trees and

kernel trees to remove irrelevant parts. The heuristics essentially: (1) replace the
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fully qualified name sub-trees with only the last component of the name; (2) remove

the location information from sub-trees; (3) extract the singletons, i.e., non-leaf nodes

that have only one child. Figure 3.4 illustrates the chopping of a kernel tree, with the

upper box showing the tree before chopping with the parts to be removed highlighted,

and the lower box showing the tree after chopping; in this example, we chopped a

fully qualified name and extracted a singleton. These heuristics greatly reduce the

size of the tree: for kernel trees, they reduce the average depth from 39.20 to 11.39.

Our models use chopped trees as the inputs to the encoders. As we discuss in

more detail in Section 3.7, the chopped trees help the models to focus better on the

relevant parts of the inputs. While the attention mechanism in principle could learn

what the relevant parts of the trees are, our evaluation shows that it can easily be

overwhelmed by large amounts of irrelevant information.

3.3.3 Copy Mechanism

We found it common for lemma name tokens to only occur in a single Coq file,

whence they are unlikely to appear in the vocabulary learned from the training set,

but can still appear in the respective lemma statement, syntax tree, or kernel tree.

For example, mg occurs in both the lemma name and lemma statement in Figure 3.1,

but not outside the file the lemma is in. To account for this, we adopt the copy

mechanism [186] which improves the generalizability of our model by allowing the

decoder to copy from inputs rather than always choosing one word from the fixed

vocabulary from the training set. To handle multiple encoders, similar to what we

did with the attention layer, we concatenate the hidden states of each encoder and

apply a copy layer on the concatenated hidden states.

3.3.4 Subtokenization

We subtokenize all inputs (lemma statements, syntax and kernel trees) and

outputs (lemma names) in a pre-processing step. Previous work on learning from
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software projects has shown that subtokenization helps to reduce the sparsity of

the vocabulary and improves the performance of the model [18]. However, unlike

Java-like languages where the method names (almost) always follow the CamelCase

convention, lemma names in Coq use a mix of snake case, CamelCase, prefixes, and

suffixes, thus making subtokenization more complex. For example, extprod mulgA

should be subtokenized to extprod, , mul, g, and A.

To perform subtokenization, we implemented a set of heuristics based on the

conventions outlined by MathComp developers [42]. After subtokenization, the vo-

cabulary size of lemma names in our corpus was reduced from 8,861 to 2,328. When

applying the subtokenizer on the lemma statements and syntax and kernel trees, we

subtokenize the identifiers and not the keywords or operators.

3.3.5 Repetition Prevention

We observed that decoders often generated repeated tokens, e.g., mem_mem_mem.

This issue is common in encoder-decoder models and also exists in natural language

summarization [194]; it is largely because the attention mechanism (while helping the

model for the most part) does not store information on how much information the

model has “covered” in the encoded sequence. We further observed that it is very

unlikely to have repeated subtokens in lemma names used by proof engineers (only

1.37% of cases in our corpus). Hence, we simply forbid the decoder from repeating a

subtoken (modulo “ ”) during beam search.

3.4 Implementation

In this section, we briefly describe our toolchain which implements the mod-

els in Section 3.3 and processes and learns from Coq files; we dub this toolchain

Roosterize. The components of the toolchain can be divided into two categories:

(1) components that interact with Coq or directly process information extracted from

Coq, and (2) components concerned with machine learning and name generation.
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The first category includes several OCaml-based tools integrated with Ser-

API [63] (and thus Coq itself), and Python-based tools for processing of data ob-

tained via SerAPI from Coq. All OCaml tools have either already been included in,

or accepted for inclusion into, SerAPI itself. The tools are as follows:

sercomp. We integrated the existing program sercomp distributed with SerAPI into

Roosterize to serialize Coq files to lists of sexps for syntax trees.

sertok. We developed an OCaml program dubbed sertok on top of SerAPI. The

program takes a Coq file as input and produces sexps of all tokens found by Coq’s

lexer in the file, organized at the sentence level.

sername. We developed an OCaml program dubbed sername on top of SerAPI. The

program takes a list of fully qualified (kernel) lemma names and produces sexps for

the kernel trees of the corresponding lemma statements.

postproc & subtokenizer. We created two small independent tools in Python to

post-process Coq sexps and perform subtokenization, respectively.

For the second category, we implemented our machine learning models in

Python using two widely-used deep learning libraries: PyTorch [161] and Open-

NMT [103]. More specifically, we extended the sequence-to-sequence models in Open-

NMT to use multi-input encoders, and extended attention and copy layers to use

multiple inputs.

3.5 Usage

This section describes how to install and use Roosterize. We provide both

a command-line interface that is suitable for CI integration and batch mode and a

Visual Studio Code extension that is suitable for interactive mode.
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3.5.1 Installation

Roosterize currently supports macOS and Linux-based operating systems.

The first installation step is to download the Roosterize repository:

$ git clone https://github.com/EngineeringSoftware/roosterize
$ cd roosterize && git checkout v1.1.0+8.10.2

Required software and libraries. Roosterize depends on two sets of software

and libraries: (1) OCaml, Coq, and SerAPI; (2) PyTorch and other Python libraries.

To install OCaml (4.07.1), Coq (8.10.2) and SerAPI (0.7.1), we recommend

using the OCaml-based package-management system OPAM [152] version 2.0.7 or

later:

$ opam switch create roosterize 4.07.1
$ opam switch roosterize && eval $(opam env)
$ opam update
$ opam pin add coq 8.10.2
$ opam pin add coq-serapi 8.10.0+0.7.1

To install PyTorch and other Python libraries, we recommend using the package-

management system Conda [12]. The installation script may be different depending

on the operating system and whether to use GPU or not. For example, on Linux, to

use CPU only:

$ conda env create --name roosterize --file conda-envs/cpu.yml
$ conda activate roosterize

After installing these required software and libraries, users can use Rooster-

ize via its command-line interface.

3.5.2 Command-Line Interface

After installation, users can launch Roosterize via ./bin/roosterize (in

short, roosterize). We focus on the main usage of Roosterize—suggesting lemma

names for Coq projects. For other usages, e.g., training models, users can refer to the

help included in Roosterize:
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Figure 3.5: Screenshot of using Roosterize from command line. The predictions
are ordered by likelihood (i.e., a 0–1 score indicating how confidence the model is),
so that more important predictions are shown first.

$ roosterize --help

Users should first obtain a model, e.g., by downloading a pre-trained model.

The following command downloads the model we pre-trained:

$ roosterize download_global_model

Applying Roosterize to a Coq project requires (1) a CoqProject file in

the project root directory in the format used by the coq makefile tool [46], and

(2) that the project source code has been compiled. If a user specified the compilation

command in the .roosterizerc configuration file at the root directory of the project,

Roosterize will automatically compile the project before suggesting lemma names.

Roosterize can suggest lemma names for one Coq file at a time. For example,

running the following commands downloads the Coq project the PCM library at Git

revision eef4503, prepares a .roosterizerc configuration file, and suggests lemma

names for the finmap.v file in the project:

$ git clone https://github.com/imdea-software/fcsl-pcm
$ git checkout eef4503
$ echo "compile_cmd: make -j8" > ./.roosterizerc
$ roosterize suggest_naming --file=$PWD/finmap/finmap.v
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In the last command, Roosterize uses SerAPI to parse finmap.v and extracts

all lemmas, then uses the lemma names prediction model to generate top k (default

k = 5) likely lemma names for each lemma, and then compares the generated lemma

names with the original lemma names, and finally prints a report to suggest potential

lemma names changes. Figure 3.5 shows part of the report generated for finmap.v2.

3.5.3 Visual Studio Code Extension

The Roosterize Visual Studio Code extension can be installed easily from

Visual Studio Code marketplace: launch “VS Code Quick Open” (Ctrl+P), paste the

following command:

ext install EngineeringSoftware.roosterize-vscode

Then, users should configure the path to Roosterize executable (./bin/-

roosterize) using the following steps: open “Settings” (Ctrl+,), search for the entry

“Roosterize: Bin Path”, and fill in the path to Roosterize executable file.

Users should first open the Coq files they want to analyze. The steps to

obtain the lemma names predictions for them are: (1) open “Command Palettes”

(Ctrl+Shift+P), and (2) choose “Roosterize: Suggest Naming (for all .v files)”. After

Roosterize produces the predictions, the lemma names that do not conform to

the conventions are underlined, and users can hover the mouse pointer over that

underlined name to view Roosterize’s prediction in a tooltip. Users can also view

all predictions in the “Problems” tab. Figure 3.6 shows a screenshot of this step.

3.6 Corpus

We constructed a corpus of 21 large Coq projects from the MathComp family,

totaling 297k lines of code (LOC). We selected these projects based on the recom-

2Full report available at: https://github.com/EngineeringSoftware/roosterize/blob/v1.

1.0%2B8.10.2-beta/docs/example-suggestion.txt
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Figure 3.6: Screenshot of using Roosterize from Visual Studio Code.
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mendation of MathComp developers, who emphasized their high quality and stringent

adherence to coding conventions. Our corpus is self-contained : there are inter-project

dependencies within the corpus, but no project depends on a project outside the cor-

pus (except Coq’s standard library). All projects build with Coq version 8.10.2. Note

that we need to be able to build projects to be able to extract tokens, syntax trees,

and kernel trees.

3.6.1 Constituent Projects

Table 3.1 lists the projects in the corpus, along with basic information about

each project. The table includes columns for the project identifier, revision SHA,

number of files (#Files), number of lemmas (#Lemmas), number of tokens (#Toks),

LOC for specifications (Spec.) and proof scripts (Proof), and average LOC per file for

specifications and proof scripts. The math-comp SHA corresponds to version 1.9.0 of

the library. The LOC numbers are computed with Coq’s bundled coqwc tool. Our

corpus consists of two parts: the main part consists of 20 projects and is used for

training and evaluating Roosterize; the left-out (LO) part is one project, infotheo,

which is used to study the generalizability of Roosterize on an unseen project.

We constructed and organized the corpus based on recommendations from

MathComp developers. The 4 core MathComp projects used in the original corpus

are included as the tier 1 set. We selected 9 projects for the tier 2 set, such that each

included project (1) has a main contributor who is also a significant contributor to one

of the tier 1 projects, and (2) follows to a significant degree the coding conventions

specified for MathComp. (infotheo would be in this set had we not added it to the left-

out part.) Finally, we selected 8 projects which follow MathComp coding conventions

but do not fulfill the tier 2 criteria, for inclusion in the tier 3 set.

We briefly describe each project in our corpus:

analysis. A library for general real analysis.

bigenough. A small library for ϵ−N reasoning.
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Table 3.1: Projects from the MathComp family used in our corpus.

Project SHA #Files #Lemmas #Toks
LOC LOC/file

Spec. Proof Spec. Proof

T
ier

1

finmap 27642a8 4 940 78,449 4,260 2,191 1,065.00 547.75
fourcolor 0851d49 60 1,157 560,682 9,175 27,963 152.92 466.05
math-comp 748d716 89 8,802 1,076,096 38,243 46,470 429.70 522.13
odd-order ca602a4 34 367 519,855 11,882 24,243 349.47 713.03

T
ier

2

analysis 9e5fe1d 17 969 152,542 5,553 6,186 326.65 363.88
bigenough 5f79a32 1 4 731 70 8 70.00 8.00
elliptic-curves 631af89 18 625 110,480 3,298 6,298 183.22 349.89
grobner dfa54f9 1 81 15,656 312 1,018 312.00 1,018.00
multinomials 691d795 5 831 83,438 3,699 3,664 739.80 732.80
real-closed 495a1fa 10 561 108,925 4,348 4,577 434.80 457.70
robot b341ad1 13 864 130,024 3,881 7,249 298.54 557.62
two-square 1c09aca 2 200 20,326 413 1,308 206.50 654.00

T
ier

3

bits 3cd298a 10 411 40,420 1,578 2,463 157.80 246.30
comp-dec-pdl c1f813b 16 494 61,731 2,305 2,114 144.06 132.12
disel e8aa80c 20 256 51,473 2,575 1,898 128.75 94.90
fcsl-pcm eef4503 12 690 70,273 2,937 2,852 244.75 237.67
games 3d3bd31 12 231 43,438 1,450 3,503 120.83 291.92
monae 9d0e461 18 349 73,578 3,422 3,233 190.11 179.61
reglang da333e0 12 230 41,327 1,299 1,734 108.25 144.50
toychain 97bd697 14 67 61,997 1,747 3,528 124.79 252.00

Main
Avg.
Σ

N/A 18.40 906.45 165,072.05 5,122.35 7,625.00 278.39 414.40
N/A 368 18,129 3,301,441 102,447 152,500 102,447 152,500

L
O infotheo 6c17242 81 1,891 463,593 12,517 29,778 154.53 367.63

All
Avg.
Σ

N/A 21.38 953.33 179,287.33 5,474.48 8,679.90 256.04 405.96
N/A 449 20,020 3,765,034 114,964 182,278 114,964 182,278
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bits. A library for reasoning about bit-level operations [29].

comp-dec-pdl. Formal proofs of completeness and decidability of converse proposi-

tional dynamic logic [56].

disel. A framework for distributed separation logic, useful for verifying implementa-

tions of distributed systems [190].

elliptic-curves. A formalization of the algebraic theory of elliptic curves [23].

fcsl-pcm. A library formalizing partial commutative monoids, which are useful for

reasoning about pointer-based programs [189].

finmap. A library with definitions and results about finite maps and sets with finitely

many members.

fourcolor. An updated version of the formal proof of the four-color theorem in graph

theory [70], which states that in all planar graphs, four colors suffice for coloring all

vertices such that no two adjacent vertices have the same color.

games. Definitions and formal proofs of theorems in algorithmic game theory [19].

grobner. A formalization of Gröbner bases.

math-comp. The MathComp library itself [128].

monae. A library for monadic equational reasoning [3].

multinomials. A library formalizing monoidal rings and multinomials, and related

results.

odd-order. The formal proof of the odd order (Feit-Thompson) theorem in abstract

algebra [71], which states that all groups of odd order are solvable.

real-closed. Theorems on real closed fields in algebra.

reglang. A formalization of the theory of regular languages [57].

robot. A formalization of the mathematics of rigid body transformations to enable

proofs about robot manipulators [1].
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Table 3.2: Statistics of the lemmas extracted from our corpus, divided into training,
validation, and evaluation sets.

#Lemmas
Name Stmt

#Char #SubToks #Char #SubToks

before filtering 23,615 10.57 4.32 59.21 25.93
after filtering 18,129 9.89 4.13 47.48 21.16

All training 15,011 9.99 4.12 47.93 21.20
Tiers validation 1,556 9.20 4.08 41.44 18.65

evaluation 1,562 9.68 4.26 49.19 23.21

training 8,861 10.14 4.22 44.16 19.59
Tier 1 validation 1,085 9.20 4.20 38.28 17.30

evaluation 1,320 9.76 4.34 48.49 23.20

training 3,692 10.03 4.02 50.52 22.37
Tier 2 validation 403 9.27 3.86 46.26 20.92

evaluation 40 8.75 3.77 49.25 22.32

training 2,458 9.37 3.90 57.65 25.28
Tier 3 validation 68 8.74 3.44 63.34 26.82

evaluation 202 9.35 3.82 53.70 23.43

toychain. Formalization and verification of a blockchain network protocol [167].

two-square. A proof of Fermat’s theorem on the sum of two squares, including a

definition of Gaussian integers.

infotheo. Formalizations of notions and results from information theory and proba-

bility theory [2].

3.6.2 Corpus Statistics

We extracted all lemmas from the corpus, and initially we obtained 23,615 lem-

mas in total. However, we found several outlier lemmas where the lemma statement,

syntax tree and kernel tree were very large. To ensure stable training, and similar

to prior work on generating method names for Java [122], we excluded the lemmas

with the deepest 25% kernel trees. This left us with 18,129 lemmas. Column 4 of

Table 3.1 shows the number of lemmas after filtering.

We randomly split corpus files into training, validation, and evaluation sets
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which contain 80%, 10%, 10% of the files, respectively. Table 3.2 shows statistics

on the lemmas in each set (of all tiers, tier 1, tier 2, and tier 3, respectively), which

includes columns for the number of files, the number of lemmas, the average number

of characters and subtokens in lemma names, and the average number of characters

and subtokens in lemma statements.

Figure 3.7 shows the boxplots to illustrate the changes of the depth, number

of nodes and number of subtokens (after flattening) of the kernel trees (first row)

and syntax trees (second row), before filtering, after filtering (before chopping), and

after chopping, respectively. Figure 3.7a shows the boxplots on the entire corpus,

and Figure 3.7b shows the boxplots on the tier 1 corpus. Our chopping process

reduced tree depth by 71.1% for kernel trees and 70.7% for syntax trees, and reduced

the number of nodes by 91.5% for kernel trees and 91.0% for syntax trees; after

flattening, the resulting average sequence length is, for kernel trees 157 comparing to

the original 2,003, and for syntax trees 149 comparing to the original 1,677.

3.7 Experiments Setup

We evaluate Roosterize by answering the following research questions, using

a combination of automatic evaluation and manual quality assessment:

RQ1: What is the performance of Roosterize on the lemma naming task and how

does it compare to baselines, when training and evaluating on the tier 1 corpus?

RQ2: How do different chopping algorithms affect the performance of Roosterize?

RQ3: What is the performance of Roosterize, when training and evaluating across

different tiers of our corpus?

RQ4: What is the performance of Roosterize on a project unseen during training,

and how does it change with additional training on the project?

RQ5: How useful are the names generated by Roosterize, as manually assessed by

the maintainer of a project?

75



0 20 40 60

before
filtering

after
filtering

after
chopping

Depth

0 1000 2000

#Nodes

0 2000 4000

Kernel Tree

#Sub-tokens

0 20 40 60

before
filtering

after
filtering

after
chopping

0 1000 2000 0 2000 4000

Syntax Tree

(a) On the entire corpus.

0 20 40 60

before
filtering

after
filtering

after
chopping

Depth

0 1000 2000

#Nodes

0 2000 4000

Kernel Tree

#Sub-tokens

0 20 40 60

before
filtering

after
filtering

after
chopping

0 1000 2000 0 2000 4000

Syntax Tree

(b) On the tier 1 corpus.

Figure 3.7: Boxplots of statistics of syntax and kernel trees before filtering, after
filtering (before chopping), and after chopping.
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3.7.1 Models and Baselines

We study the combinations of: (1) using individual input (lemma statement

and trees) in a single encoder, or multi-input encoders with different mixture of

these inputs; and (2) using the attention and copy mechanisms. Our inputs include:

lemma statement (Stmt), syntax tree (STree), chopped syntax tree (CSTree), kernel

tree (KTree), and chopped kernel tree (CKTree). For multiple inputs, the models are

named by concatenating inputs with “+”; a “+” is also used to denote the presence

of attention (attn) or copy (copy). For example, Stmt+CKTree+attn+copy refers to

a model that uses two encoders—one for lemma statement and one for chopped kernel

tree—and uses attention and copy mechanisms.

We consider the vanilla encoder-decoder models with only one input (lemma

statement, syntax tree, or kernel tree) as baseline models. We also compare with a

retrieval-based baseline model implemented using Lucene [13]: a k-nearest neighbors

classifier using the tf-idf3 of the tokens in lemma statement as features.

Hyper-parameters are tuned on the validation set within the following options:

embedding dimensions from {200, 500, 1000}, number of hidden units in each LSTM

from {200, 500, 1000}, number of stacked LSTM layers from {1, 2, 3}. We set the

dropout rate4 between LSTM layers to 0.5. We set the output dimension of the

fully connected layer for combining encoders to the same number as the number of

hidden units in each LSTM. We checked the validation loss every 200 training steps

(as defined in OpenNMT [103], which is similar to one training epoch on our dataset),

3Tf-idf is a numerical metric reflecting the importance of a token to a document in a corpus,
calculated as the product of term frequency (proportional to the frequency of the token in the
document) and inverse document frequency (inversely proportional to the number of documents
containing the token). In our retrieval-based baseline model, we used Lucene’s implementation of
tf-idf [13].

4Dropout [84] is a regularization technique for reducing overfitting, by randomly resetting a
fraction of neural connections between two layers during training (and during training only). In
our experiments, a dropout rate of 0.5 between the LSTM layers means that 50% of the bits of the
hidden and cell states are set to 0 when they are passed from a previous layer to its next layer in
the LSTM during training.
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and set an early stopping threshold of 3. We used the Adam [102] optimizer with a

learning rate5 of 0.001. We used a beam size of 5 in beam search. All the experiments

were run on a cluster of machines each equiped with 2x Intel(R) Xeon(R) E5-2620 v4

@ 2.10GHz CPUs, 4x NVidia 1080-TI GPUs, and 128GB RAM.

3.7.2 Metrics

We use four automatic metrics which evaluate generated lemma names against

the reference lemma names (as written by developers) in the evaluation set. Each

metric captures a different level of granularity of the generation quality.

BLEU [160] is a standard metric used in transduction tasks including language ↔

code transduction. It calculates the number of n-grams in a generated sequence that

also appear in the reference sequence, where one “n-gram” is n consecutive items in

a sequence (in our case, one “n-gram” is n consecutive characters in the sequence of

characters of the lemma name). We use it to compute the 1∼4-grams overlap between

the characters in generated name and characters in the reference name, averaged

between 1∼4-grams with smoothing method proposed by Lin and Och [119].

Fragment accuracy (FragAcc) computes the accuracy of generated names on

the fragment level, which is defined by splitting the name by underscores (“ ”).

For example, when the reference name is det map mx and the generated name is

map determinant mx, the fragment accuracy is 66.7%. Unlike BLEU, fragment accu-

racy ignores the ordering of the fragments.

Exact-match accuracy (XM) computes how often the true name fully matches

the generated name.

5The learning rate controls the speed of adjusting models’ learnable parameters based on the
loss at each iteration of the training. An excessively large learning rate makes training faster, but
may result in “overshooting”: adjusting so much that it results in jumping over the minima. A too
low learning rate means training is unnecessarily slow to complete, and may result in the training
getting stuck in a local minimum.
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Table 3.3: The combinations of training, validation, and evaluation sets used in our
evaluation.

Training & Validation Evaluation Results Table

Tier 1 Tier 1 Table 3.4
All Tiers All Tiers Table 3.6
All Tiers Tier 1 Table 3.7
All Tiers Tier 2 Table 3.8
All Tiers Tier 3 Table 3.9
Tier 1 All Tiers Table 3.10
Tier 1 Tier 2 Table 3.11
Tier 1 Tier 3 Table 3.12
Tier 2 Tier 2 Table 3.13
Tier 3 Tier 3 Table 3.14

Top-5 accuracy (Acc@5) computes how often the true name is one of the top-5

generated names.

3.7.3 Training, Validation, and Evaluation Sets

Different tiers of our corpus have different levels of alignment to MathComp’s

coding conventions, as we explained in Section 3.6. We primarily compare Rooster-

ize against baselines and draw conclusions from the results by training the models on

tier 1’s training & validation set and evaluating on tier 1’s evaluation set, because the

tier 1 corpus is the least noisy (i.e., most developer-written lemma names are correct).

We also experiment on other combinations of training, validation, and evaluation set

to study: (1) whether models trained on the all tiers corpus, which is larger but more

noisy, can achieve better performance; (2) whether models trained on the tier 2 / tier

3 corpus, which is less coherent than the tier 1 corpus, can perform well on the tier 2

/ tier 3 corpus itself. Table 3.3 lists the combinations we used; the first column shows

the corpus that training and validation sets are from, the second column shows the

corpus that evaluation set is from, and the third column indicates the results table

for each combination.
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3.8 Results

This section presents the results of Roosterize and baseline models, and

answers the research questions from Section 3.7.

3.8.1 RQ1: Roosterize vs. Baselines on the Tier 1 Corpus

Table 3.4 shows the performance of the models. Similar models are grouped

together. The first column shows the names of the model groups and the second

column shows the names of the models. For each model, we show values for the

four automatic metrics, BLEU, fragment accuracy (FragAcc), exact-match accuracy

(XM), and top-5 accuracy (Acc@5). We repeated each experiment 3 times, with

different random initialization each time, and computed the averages of each auto-

mated metric. We performed statistical significance tests—under significance level

p < 0.05 using the bootstrap method [24]—to compare each pair of models. We use

bold text to highlight the best value for each automatic metric, and gray background

for baseline models. We make several observations:

Finding #1: The best overall performance (BLEU = 47.2) is obtained using the

multi-input model with lemma statement and chopped kernel tree as inputs, which

also includes copy and attention mechanisms (Stmt+CKTree+attn+copy). The im-

provements over all other models are statistically significant and all automatic metrics

are consistent in identifying the best model. This shows the importance of using Coq’s

execution data and focusing only on certain parts of the kernel trees.

Finding #2: The copy mechanism brings statistically significant improvements to

all models. This can be clearly observed by comparing groups 1 and 3 in the table, as

well as groups 2 and 4. For example, BLEU for Stmt+attn and Stmt+attn+copy are

26.9 and 38.9, respectively. We believe that the copy mechanism plays an important

role because many subtokens are specific to the file context and do not appear in the

fixed vocabulary learned on the files in training set.

Finding #3: Using chopped trees greatly improves performance of models and the
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Table 3.4: Results of Roosterize models and baselines trained on the tier 1 corpus
and evaluated on the tier 1 corpus.

Group Model BLEU FragAcc XM Acc@5

Stmt+CKTree+CSTree+attn+copy 45.4 22.2% 7.5% 16.5%
Stmt+CKTree+attn+copy 47.2 24.9% 9.6% 18.0%
Stmt+CSTree+attn+copy 37.7 18.1% 6.1% 10.6%

Multi-input
+attn
+copy

CKTree+CSTree+attn+copy 45.4 22.9% 7.6% 15.3%

CKTree+attn+copy 42.9 19.8% 5.0% 11.7%
CSTree+attn+copy 39.8 18.3% 6.8% 12.2%
KTree+attn+copy 37.0 14.2% 2.2% 8.4%
STree+attn+copy 31.0 10.8% 2.8% 6.1%

Single-input
+attn
+copy

Stmt+attn+copy 38.9 19.4% 6.9% 11.6%

Stmt+CKTree+CSTree+attn 24.5 8.6% 0.4% 0.9%
Stmt+CKTree+attn 25.6 8.5% 0.9% 1.7%
Stmt+CSTree+attn 23.8 8.2% 0.8% 1.6%

Multi-input
+attn

CKTree+CSTree+attn 28.4 10.9% 1.8% 3.4%

CKTree+attn 19.5 4.9% 0.6% 1.3%
CSTree+attn 28.9 12.1% 1.5% 2.9%
KTree+attn 14.1 1.6% 0.0% 0.0%
STree+attn 8.8 1.0% 0.0% 0.0%

Single-input
+attn

Stmt+attn 26.9 11.1% 1.1% 2.5%

Stmt+CKTree+CSTree 17.7 3.5% 0.1% 0.2%
Stmt+CKTree 19.5 4.5% 0.1% 0.3%
Stmt+CSTree 12.6 0.6% 0.0% 0.0%

Multi-input

CKTree+CSTree 16.7 2.4% 0.0% 0.1%

CKTree 15.5 1.6% 0.0% 0.0%
CSTree 14.5 0.8% 0.1% 0.1%
KTree 12.0 0.6% 0.0% 0.0%
STree 5.7 0.4% 0.0% 0.0%

Single-input

Stmt 20.0 4.7% 0.1% 0.3%

- Retrieval-based 28.3 10.0% 0.2% 0.3%
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improvements brought by upgrading KTree to CKTree or STree to CSTree are statis-

tically significant. For example, this can be clearly seen in the second group: BLEU

for KTree+attn+copy and CKTree+attn+copy are 37.0 and 42.9, respectively. We

believe that the size of the original trees, and a lot of irrelevant data in those trees,

hurt the performance. The fact that CKTree and CSTree both perform much better

than using KTree or STree across all groups indicate that the chopped trees could be

viewed as a form of supervised attention with flat values that helps later attention

layers to focus better.

Finding #4: Although chopped syntax tree with attention outperforms (statistically

significant) chopped kernel tree with attention (BLEU 28.9 vs. 19.5), chopped kernel

tree with attention and copy by far outperforms (statistically significant) chopped

syntax tree with attention and copy (BLEU 42.9 vs. 39.8). The copy mechanism helps

kernel trees much more than the syntax trees, because the mathematical notations

and symbols in the syntax trees get expanded to their names in the kernel trees, and

some of them are needed as a part of the lemma names.

Finding #5: Lemma statement and syntax tree do not work well together, primarily

because the two representations contain mostly the same information. In which case,

a model taking both as inputs may not work as well as using only one of the inputs,

because more parameters need to be trained.

Finding #6: The retrieval-based baseline, which is the strongest among baselines,

outperforms several encoder-decoder models without attention and copy or with only

attention, but is worse than (statistically significant) all models with both attention

and copy mechanisms enabled.

3.8.2 RQ2: Ablation Study on Tree Chopping

In order to corroborate the effectiveness of Roosterize’s tree chopping heuris-

tics, we designed an ablation study that applies three different sets of chopping heuris-

tics and compares them with the one in Roosterize (Section 3.3.2). The three sets
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of chopping heuristics are:

• Keep-category chopping. This set of heuristics is almost the same as Roos-

terize chopping, except that it keeps the category of a referenced name in

kernel trees (e.g., whether it is a constant or inductive type), since that seman-

tic information could be relevant for naming.

• Rule-based chopping. Removes all nodes after depth 10 for syntax and kernel

trees. This is similar to the proof kernel tree processing heuristics used in

ML4PG [81].

• Random chopping. Randomly removes a subset of nodes from syntax and

kernel trees so that the resulting trees have the same average number of nodes

compared to Roosterize’s chopped trees, i.e., the heuristic removes 90.9%

nodes from syntax trees and 91.4% nodes from kernel trees.

We performed the ablation study by training models on the tier 1 corpus and evalu-

ating on the tier 1 corpus.

Table 3.5 shows the results of the ablation study. The models using the same

chopping heuristics are grouped together. We make several observations:

• Among keep-category chopping models, Stmt+CKTree+CSTree+attn+copy and

Stmt+CKTree+attn+copy perform the best, and they have performance simi-

lar to Stmt+CKTree+attn+copy using Roosterize chopping (Roosterize’s

best model). The measured differences between these three models are not

statistically significant, under significance level p < 0.05 using the bootstrap

method [24]. This indicates that although the category of a referenced name

may contain some relevant semantic information, the most relevant information

is already preserved by Roosterize chopping heuristics.
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Table 3.5: Results of the ablation study on tree chopping.

Group Model BLEU FragAcc XM Acc@5

Stmt+CKTree+CSTree+attn+copy 45.4 22.2% 7.5% 16.5%
Stmt+CKTree+attn+copy 47.2 24.9% 9.6% 18.0%
Stmt+CSTree+attn+copy 37.7 18.1% 6.1% 10.6%

Roosterize
Chopping

CKTree+CSTree+attn+copy 45.4 22.9% 7.6% 15.3%

Stmt+CKTree+CSTree+attn+copy 46.8 25.3% 9.5% 19.0%
Stmt+CKTree+attn+copy 47.2 25.2% 9.4% 18.0%
Stmt+CSTree+attn+copy 37.1 17.9% 6.2% 10.5%

Keep-category
Chopping

CKTree+CSTree+attn+copy 46.4 22.6% 7.5% 15.0%

Stmt+CKTree+CSTree+attn+copy 37.0 17.7% 5.9% 10.5%
Stmt+CKTree+attn+copy 38.8 19.7% 6.7% 11.0%
Stmt+CSTree+attn+copy 36.9 16.0% 6.3% 10.5%

Rule-based
Chopping

CKTree+CSTree+attn+copy 13.2 0.4% 0.0% 0.0%

Stmt+CKTree+CSTree+attn+copy 37.7 19.2% 6.7% 10.9%
Stmt+CKTree+attn+copy 38.5 19.3% 7.3% 11.3%
Stmt+CSTree+attn+copy 38.0 18.6% 7.1% 11.4%

Random
Chopping

CKTree+CSTree+attn+copy 17.1 2.7% 0.1% 0.1%

• The models using rule-based chopping and random chopping have poor per-

formance. This indicates that the performance gain achieved by Roosterize

through chopping is not only due to the size reduction of the input trees, but

also due to the relevant information retained by our chopping heuristics.

3.8.3 RQ3: Roosterize vs. Baselines on Different Training, Validation,
and Evaluation Sets

We present the results of Roosterize vs. Baselines by: (1) training on the

all tiers corpus and evaluating on the all tiers (Table 3.6), tier 1 (Table 3.7), tier

2 (Table 3.8), and tier 3 (Table 3.9) corpus; (2) training on the tier 1 corpus and

evaluating on the all tiers (Table 3.10), tier 2 (Table 3.11), and tier 3 (Table 3.12)

corpus; (3) training and evaluating on the tier 2 (Table 3.13) and tier 3 (Table 3.14)

corpus.

All our observations in Section 3.8.1 on training and testing on our original

corpus (here, tier 1) hold when training and testing on all tiers. Additionally, we make
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Table 3.6: Results of Roosterize models and baselines trained on the all tiers corpus
and evaluated on the all tiers corpus.

Group Model BLEU FragAcc XM Acc@5

Stmt+CKTree+CSTree+attn+copy 43.2 23.2% 7.1% 15.5%
Stmt+CKTree+attn+copy 47.2 26.1% 10.3% 19.0%
Stmt+CSTree+attn+copy 34.9 18.0% 4.9% 10.7%

Multi-input
+attn
+copy

CKTree+CSTree+attn+copy 44.2 22.2% 7.4% 14.8%

CKTree+attn+copy 44.1 20.9% 5.8% 13.1%
CSTree+attn+copy 39.0 19.1% 7.9% 13.3%
KTree+attn+copy 35.4 14.6% 1.2% 6.4%
STree+attn+copy 31.3 14.2% 3.4% 7.1%

Single-input
+attn
+copy

Stmt+attn+copy 39.7 20.8% 7.5% 13.6%

Stmt+CKTree+CSTree+attn 23.1 7.9% 1.1% 2.0%
Stmt+CKTree+attn 27.3 10.9% 1.6% 3.0%
Stmt+CSTree+attn 23.6 9.5% 1.7% 3.0%

Multi-input
+attn

CKTree+CSTree+attn 26.6 10.4% 2.5% 4.5%

CKTree+attn 22.8 7.0% 1.0% 1.7%
CSTree+attn 31.0 13.1% 2.5% 4.8%
KTree+attn 13.5 2.0% 0.1% 0.4%
STree+attn 11.5 1.8% 0.0% 0.1%

Single-input
+attn

Stmt+attn 27.5 11.0% 1.1% 2.0%

Stmt+CKTree+CSTree 18.2 4.3% 0.2% 0.4%
Stmt+CKTree 20.3 5.5% 0.4% 0.8%
Stmt+CSTree 11.2 0.1% 0.0% 0.0%

Multi-input

CKTree+CSTree 12.1 0.8% 0.0% 0.0%

CKTree 14.1 1.3% 0.0% 0.0%
CSTree 14.4 1.1% 0.1% 0.1%
KTree 11.1 0.0% 0.0% 0.0%
STree 10.8 0.0% 0.0% 0.0%

Single-input

Stmt 20.3 5.4% 0.3% 0.5%

- Retrieval-based 28.2 10.9% 0.6% 0.8%
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Table 3.7: Results of Roosterize models and baselines trained on the all tiers corpus
and evaluated on the tier 1 corpus.

Group Model BLEU FragAcc XM Acc@5

Stmt+CKTree+CSTree+attn+copy 45.0 23.5% 7.6% 16.9%
Stmt+CKTree+attn+copy 49.3 26.7% 11.1% 20.6%
Stmt+CSTree+attn+copy 35.0 17.3% 4.8% 10.4%

Multi-input
+attn
+copy

CKTree+CSTree+attn+copy 45.9 22.3% 8.1% 16.3%

CKTree+attn+copy 45.8 21.3% 6.1% 14.1%
CSTree+attn+copy 39.4 18.8% 7.9% 13.4%
KTree+attn+copy 36.4 14.6% 1.0% 6.3%
STree+attn+copy 31.2 13.8% 3.6% 7.5%

Single-input
+attn
+copy

Stmt+attn+copy 40.2 20.4% 7.7% 14.0%

Stmt+CKTree+CSTree+attn 23.5 7.8% 1.1% 2.0%
Stmt+CKTree+attn 28.1 10.9% 1.6% 3.0%
Stmt+CSTree+attn 23.9 8.9% 1.5% 2.8%

Multi-input
+attn

CKTree+CSTree+attn 27.8 10.6% 2.5% 4.7%

CKTree+attn 23.4 6.8% 1.0% 1.8%
CSTree+attn 32.1 13.3% 2.7% 5.0%
KTree+attn 13.6 1.9% 0.2% 0.5%
STree+attn 11.4 1.9% 0.0% 0.1%

Single-input
+attn

Stmt+attn 27.9 10.7% 1.0% 1.9%

Stmt+CKTree+CSTree 18.4 4.2% 0.2% 0.4%
Stmt+CKTree 20.6 5.4% 0.4% 0.7%
Stmt+CSTree 11.3 0.1% 0.0% 0.0%

Multi-input

CKTree+CSTree 12.2 0.8% 0.0% 0.0%

CKTree 14.3 1.3% 0.0% 0.0%
CSTree 14.5 1.2% 0.1% 0.2%
KTree 11.1 0.0% 0.0% 0.0%
STree 10.8 0.0% 0.0% 0.0%

Single-input

Stmt 20.6 5.2% 0.4% 0.5%

- Retrieval-based 29.0 10.5% 0.3% 0.3%
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Table 3.8: Results of Roosterize models and baselines trained on the all tiers corpus
and evaluated on the tier 2 corpus.

Group Model BLEU FragAcc XM Acc@5

Stmt+CKTree+CSTree+attn+copy 31.7 20.7% 5.8% 15.0%
Stmt+CKTree+attn+copy 35.5 25.0% 14.2% 21.7%
Stmt+CSTree+attn+copy 35.6 18.9% 7.5% 13.3%

Multi-input
+attn
+copy

CKTree+CSTree+attn+copy 35.4 29.2% 9.2% 13.3%

CKTree+attn+copy 32.4 21.2% 6.7% 12.5%
CSTree+attn+copy 38.7 23.9% 10.8% 18.3%
KTree+attn+copy 29.2 19.9% 6.7% 10.0%
STree+attn+copy 27.5 11.2% 1.7% 4.2%

Single-input
+attn
+copy

Stmt+attn+copy 33.2 17.8% 7.5% 16.7%

Stmt+CKTree+CSTree+attn 23.2 10.6% 2.5% 6.7%
Stmt+CKTree+attn 26.0 14.2% 4.2% 10.0%
Stmt+CSTree+attn 25.9 17.6% 6.7% 10.0%

Multi-input
+attn

CKTree+CSTree+attn 22.4 15.4% 7.5% 8.3%

CKTree+attn 23.2 10.8% 3.3% 5.0%
CSTree+attn 30.2 18.8% 6.7% 11.7%
KTree+attn 13.7 2.9% 0.0% 0.0%
STree+attn 9.6 1.7% 0.0% 0.0%

Single-input
+attn

Stmt+attn 27.0 15.1% 4.2% 10.0%

Stmt+CKTree+CSTree 20.4 7.9% 1.7% 2.5%
Stmt+CKTree 18.8 7.6% 0.8% 2.5%
Stmt+CSTree 11.7 0.4% 0.0% 0.0%

Multi-input

CKTree+CSTree 11.9 0.4% 0.0% 0.0%

CKTree 15.0 2.5% 0.0% 0.0%
CSTree 14.8 1.8% 0.0% 0.0%
KTree 12.1 1.4% 0.0% 0.0%
STree 12.3 0.0% 0.0% 0.0%

Single-input

Stmt 23.6 13.7% 0.8% 0.8%

- Retrieval-based 31.0 27.5% 2.5% 7.5%
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Table 3.9: Results of Roosterize models and baselines trained on the all tiers corpus
and evaluated on the tier 3 corpus.

Group Model BLEU FragAcc XM Acc@5

Stmt+CKTree+CSTree+attn+copy 33.6 21.4% 3.8% 6.8%
Stmt+CKTree+attn+copy 36.0 22.6% 4.3% 8.6%
Stmt+CSTree+attn+copy 34.4 22.1% 5.0% 11.9%

Multi-input
+attn
+copy

CKTree+CSTree+attn+copy 34.5 20.3% 2.8% 5.6%

CKTree+attn+copy 34.5 17.8% 2.8% 6.3%
CSTree+attn+copy 36.3 20.5% 6.9% 11.6%
KTree+attn+copy 29.6 12.1% 1.5% 5.9%
STree+attn+copy 32.5 17.6% 2.5% 5.1%

Single-input
+attn
+copy

Stmt+attn+copy 37.4 24.2% 6.1% 10.2%

Stmt+CKTree+CSTree+attn 20.3 7.7% 0.8% 1.3%
Stmt+CKTree+attn 22.1 10.2% 0.8% 1.5%
Stmt+CSTree+attn 20.7 11.2% 1.7% 2.5%

Multi-input
+attn

CKTree+CSTree+attn 19.2 7.7% 1.3% 2.0%

CKTree+attn 18.9 7.0% 0.5% 0.7%
CSTree+attn 24.2 10.4% 0.8% 2.1%
KTree+attn 12.7 2.2% 0.0% 0.2%
STree+attn 12.2 1.5% 0.0% 0.0%

Single-input
+attn

Stmt+attn 24.4 12.5% 0.8% 1.2%

Stmt+CKTree+CSTree 16.2 4.3% 0.2% 0.3%
Stmt+CKTree 18.5 5.7% 0.3% 0.8%
Stmt+CSTree 10.9 0.1% 0.0% 0.0%

Multi-input

CKTree+CSTree 12.0 0.7% 0.0% 0.0%

CKTree 12.5 0.6% 0.0% 0.0%
CSTree 13.5 0.1% 0.0% 0.0%
KTree 11.0 0.0% 0.0% 0.0%
STree 10.6 0.0% 0.0% 0.0%

Single-input

Stmt 17.6 5.0% 0.0% 0.5%

- Retrieval-based 23.7 11.6% 2.5% 3.0%
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Table 3.10: Results of Roosterize models and baselines trained on the tier 1 corpus
and evaluated on the all tiers corpus.

Group Model BLEU FragAcc XM Acc@5

Stmt+CKTree+CSTree+attn+copy 43.3 21.4% 6.8% 14.9%
Stmt+CKTree+attn+copy 44.5 23.9% 8.5% 16.2%
Stmt+CSTree+attn+copy 36.6 17.5% 5.6% 10.1%

Multi-input
+attn
+copy

CKTree+CSTree+attn+copy 43.3 22.3% 6.8% 13.8%

CKTree+attn+copy 40.7 19.2% 4.5% 10.6%
CSTree+attn+copy 38.8 18.3% 6.4% 11.6%
KTree+attn+copy 35.1 13.1% 2.0% 7.3%
STree+attn+copy 30.9 10.9% 2.6% 5.9%

Single-input
+attn
+copy

Stmt+attn+copy 38.0 19.1% 6.4% 10.9%

Stmt+CKTree+CSTree+attn 23.8 8.5% 0.4% 0.9%
Stmt+CKTree+attn 24.6 8.4% 0.9% 1.7%
Stmt+CSTree+attn 23.2 8.0% 0.7% 1.5%

Multi-input
+attn

CKTree+CSTree+attn 27.1 10.5% 1.7% 3.2%

CKTree+attn 18.9 4.7% 0.5% 1.2%
CSTree+attn 27.9 11.9% 1.6% 2.8%
KTree+attn 13.7 1.5% 0.0% 0.0%
STree+attn 8.8 1.0% 0.0% 0.0%

Single-input
+attn

Stmt+attn 26.0 10.8% 1.2% 2.4%

Stmt+CKTree+CSTree 17.4 3.4% 0.1% 0.2%
Stmt+CKTree 19.1 4.4% 0.1% 0.2%
Stmt+CSTree 12.6 0.6% 0.0% 0.0%

Multi-input

CKTree+CSTree 16.2 2.2% 0.0% 0.0%

CKTree 15.2 1.6% 0.0% 0.0%
CSTree 14.4 0.8% 0.1% 0.1%
KTree 12.2 0.6% 0.0% 0.0%
STree 5.7 0.3% 0.0% 0.0%

Single-input

Stmt 19.4 4.6% 0.1% 0.3%

- Retrieval-based 26.9 9.6% 0.3% 0.4%
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Table 3.11: Results of Roosterize models and baselines trained on the tier 1 corpus
and evaluated on the tier 2 corpus.

Group Model BLEU FragAcc XM Acc@5

Stmt+CKTree+CSTree+attn+copy 34.2 22.8% 9.2% 11.7%
Stmt+CKTree+attn+copy 35.0 26.7% 8.3% 14.2%
Stmt+CSTree+attn+copy 36.7 14.2% 6.7% 14.2%

Multi-input
+attn
+copy

CKTree+CSTree+attn+copy 33.9 25.8% 9.2% 16.7%

CKTree+attn+copy 34.8 25.0% 8.3% 14.2%
CSTree+attn+copy 35.6 20.1% 7.5% 15.8%
KTree+attn+copy 25.3 11.2% 3.3% 7.5%
STree+attn+copy 33.3 14.2% 2.5% 6.7%

Single-input
+attn
+copy

Stmt+attn+copy 42.4 20.8% 6.7% 15.8%

Stmt+CKTree+CSTree+attn 24.8 12.8% 1.7% 5.8%
Stmt+CKTree+attn 25.5 13.2% 5.0% 6.7%
Stmt+CSTree+attn 22.8 10.4% 0.0% 5.0%

Multi-input
+attn

CKTree+CSTree+attn 25.6 15.6% 5.8% 7.5%

CKTree+attn 19.4 6.7% 0.8% 3.3%
CSTree+attn 28.0 17.5% 6.7% 7.5%
KTree+attn 13.1 1.4% 0.0% 0.8%
STree+attn 10.9 2.1% 0.0% 0.0%

Single-input
+attn

Stmt+attn 28.5 17.9% 5.0% 6.7%

Stmt+CKTree+CSTree 20.4 10.4% 0.8% 2.5%
Stmt+CKTree 17.9 6.7% 0.0% 0.0%
Stmt+CSTree 14.3 0.4% 0.0% 0.0%

Multi-input

CKTree+CSTree 15.6 4.6% 0.0% 0.0%

CKTree 15.3 3.6% 0.0% 0.0%
CSTree 14.9 2.2% 0.0% 0.0%
KTree 12.2 0.4% 0.0% 0.0%
STree 6.6 0.0% 0.0% 0.0%

Single-input

Stmt 20.9 9.9% 2.5% 4.2%

- Retrieval-based 24.8 14.6% 2.5% 7.5%
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Table 3.12: Results of Roosterize models and baselines trained on the tier 1 corpus
and evaluated on the tier 3 corpus.

Group Model BLEU FragAcc XM Acc@5

Stmt+CKTree+CSTree+attn+copy 31.2 15.9% 2.1% 5.4%
Stmt+CKTree+attn+copy 29.1 16.9% 1.3% 4.5%
Stmt+CSTree+attn+copy 29.8 13.8% 2.1% 5.8%

Multi-input
+attn
+copy

CKTree+CSTree+attn+copy 31.3 17.9% 1.7% 3.5%

CKTree+attn+copy 27.6 13.8% 1.0% 2.6%
CSTree+attn+copy 33.1 17.8% 3.8% 6.8%
KTree+attn+copy 24.3 6.4% 0.0% 1.2%
STree+attn+copy 30.4 11.1% 1.8% 4.3%

Single-input
+attn
+copy

Stmt+attn+copy 30.9 16.7% 3.1% 5.8%

Stmt+CKTree+CSTree+attn 19.5 7.6% 0.3% 0.3%
Stmt+CKTree+attn 18.3 6.8% 0.2% 0.3%
Stmt+CSTree+attn 19.4 6.3% 0.3% 0.7%

Multi-input
+attn

CKTree+CSTree+attn 18.9 7.4% 0.3% 0.8%

CKTree+attn 15.0 2.8% 0.0% 0.2%
CSTree+attn 21.3 9.4% 1.2% 1.2%
KTree+attn 10.7 0.4% 0.0% 0.0%
STree+attn 7.7 0.5% 0.0% 0.0%

Single-input
+attn

Stmt+attn 19.5 7.5% 0.5% 0.8%

Stmt+CKTree+CSTree 14.9 1.6% 0.0% 0.0%
Stmt+CKTree 16.5 3.8% 0.0% 0.0%
Stmt+CSTree 12.4 0.5% 0.0% 0.0%

Multi-input

CKTree+CSTree 13.4 1.0% 0.0% 0.0%

CKTree 13.1 1.2% 0.0% 0.0%
CSTree 13.5 0.7% 0.0% 0.0%
KTree 12.9 1.0% 0.0% 0.0%
STree 5.8 0.0% 0.0% 0.0%

Single-input

Stmt 15.7 3.2% 0.0% 0.0%

- Retrieval-based 18.3 5.7% 0.0% 0.0%
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Table 3.13: Results of Roosterize models and baselines trained on the tier 2 corpus
and evaluated on the tier 2 corpus.

Group Model BLEU FragAcc XM Acc@5

Stmt+CKTree+CSTree+attn+copy 31.8 17.6% 5.8% 9.2%
Stmt+CKTree+attn+copy 29.5 17.5% 4.2% 8.3%
Stmt+CSTree+attn+copy 28.8 9.6% 0.0% 2.5%

Multi-input
+attn
+copy

CKTree+CSTree+attn+copy 30.5 15.8% 5.0% 10.8%

CKTree+attn+copy 33.6 18.2% 4.2% 5.8%
CSTree+attn+copy 29.3 9.9% 0.8% 5.0%
KTree+attn+copy 31.2 17.2% 4.2% 7.5%
STree+attn+copy 25.0 2.8% 0.0% 0.0%

Single-input
+attn
+copy

Stmt+attn+copy 29.7 15.4% 2.5% 5.8%

Stmt+CKTree+CSTree+attn 22.3 10.0% 1.7% 1.7%
Stmt+CKTree+attn 21.4 8.1% 0.8% 2.5%
Stmt+CSTree+attn 24.3 14.2% 1.7% 7.5%

Multi-input
+attn

CKTree+CSTree+attn 18.0 6.9% 0.8% 3.3%

CKTree+attn 15.7 1.1% 0.0% 0.0%
CSTree+attn 17.5 3.5% 0.0% 0.0%
KTree+attn 11.2 0.0% 0.0% 0.0%
STree+attn 11.3 0.0% 0.0% 0.0%

Single-input
+attn

Stmt+attn 20.6 7.8% 0.8% 6.7%

Stmt+CKTree+CSTree 15.5 3.5% 0.0% 0.0%
Stmt+CKTree 15.3 2.6% 0.0% 0.0%
Stmt+CSTree 11.4 0.3% 0.0% 0.0%

Multi-input

CKTree+CSTree 11.1 0.0% 0.0% 0.0%

CKTree 9.7 1.4% 0.0% 0.0%
CSTree 12.8 0.0% 0.0% 0.0%
KTree 8.7 0.0% 0.0% 0.0%
STree 6.8 0.0% 0.0% 0.0%

Single-input

Stmt 14.6 1.9% 0.0% 0.0%

- Retrieval-based 27.7 25.2% 0.0% 0.0%
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Table 3.14: Results of Roosterize models and baselines trained on the tier 3 corpus
and evaluated on the tier 3 corpus.

Group Model BLEU FragAcc XM Acc@5

Stmt+CKTree+CSTree+attn+copy 33.5 19.5% 2.3% 5.9%
Stmt+CKTree+attn+copy 31.2 16.9% 0.8% 6.3%
Stmt+CSTree+attn+copy 32.0 17.3% 3.3% 7.6%

Multi-input
+attn
+copy

CKTree+CSTree+attn+copy 31.8 15.5% 1.3% 5.0%

CKTree+attn+copy 29.9 15.7% 1.3% 6.1%
CSTree+attn+copy 32.7 15.3% 4.0% 6.3%
KTree+attn+copy 30.7 12.4% 1.3% 5.0%
STree+attn+copy 28.4 12.6% 2.0% 6.4%

Single-input
+attn
+copy

Stmt+attn+copy 34.3 19.8% 3.3% 5.3%

Stmt+CKTree+CSTree+attn 14.5 1.4% 0.0% 0.0%
Stmt+CKTree+attn 17.9 5.3% 0.0% 0.0%
Stmt+CSTree+attn 19.0 6.6% 0.2% 0.2%

Multi-input
+attn

CKTree+CSTree+attn 12.4 2.2% 0.0% 0.0%

CKTree+attn 14.8 2.3% 0.0% 0.0%
CSTree+attn 17.0 2.8% 0.0% 0.0%
KTree+attn 13.1 0.2% 0.0% 0.0%
STree+attn 4.8 0.3% 0.0% 0.0%

Single-input
+attn

Stmt+attn 17.6 5.8% 0.0% 0.0%

Stmt+CKTree+CSTree 12.6 0.7% 0.0% 0.0%
Stmt+CKTree 14.4 1.4% 0.0% 0.0%
Stmt+CSTree 9.1 0.2% 0.0% 0.0%

Multi-input

CKTree+CSTree 11.1 0.0% 0.0% 0.0%

CKTree 11.7 0.1% 0.0% 0.0%
CSTree 10.1 0.0% 0.0% 0.0%
KTree 14.3 0.2% 0.0% 0.0%
STree 14.4 0.2% 0.0% 0.0%

Single-input

Stmt 14.4 1.4% 0.0% 0.0%

- Retrieval-based 22.1 9.6% 2.5% 3.0%
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the following observations based on the results of models using different combinations

of training, validation, and evaluation sets:

• Training on all tiers helps Roosterize obtain better performance, although the

corpus includes some noise from tier 2 and tier 3 projects. This observation is based

on comparing the results of training on different sets and testing on the same set.

For example, when testing on all tiers, the best BLEU score among models trained

on all tiers (47.2, see Table 3.6) is higher than the best score for models trained

on tier 1 (44.5, see Table 3.10). As another example, when testing on tier 2, the

best BLEU score among models trained on all tiers is 38.7 (see Table 3.8), which

is higher than the best score among models trained on tier 2, namely, 33.6 (see

Table 3.13).

• Tier 2 and tier 3 projects are indeed less conforming to MathComp naming con-

ventions than tier 1 projects, confirming the judgment of domain experts. With

the same models trained on all tiers, Roosterize’s best BLEU score on the tier

1 evaluation set (49.3) is greater than the best BLEU score on the tier 2 evalua-

tion set (38.7), and the latter is greater than the best BLEU score on the tier 3

evaluation set (37.4). The same relationships hold for the models trained on tier 1.

3.8.4 RQ4: Generalization Case Study

The project in our left-out corpus, infotheo, consists of 81 Coq files, and con-

tains 1,891 lemmas. We randomly split the files into training, validation, and eval-

uation sets which contain 40%, 10%, 50% of the files, respectively. After splitting,

there were 580 lemmas in the training set, 144 lemmas in the validation set, and 1,167

lemmas in the evaluation set.

Table 3.15 shows the results of applying Roosterize with the best model,

trained on the all tiers corpus, on infotheo without and with additional training.

The first column shows the number of lemmas from the infotheo training set used for

additional training. The rest of the columns show the four automatic metrics. We can
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Table 3.15: Results of the generalization study with Roosterize models trained
on all tiers, potentially further trained on the left-out corpus, and evaluated on the
left-out corpus.

#Lemmas BLEU FragAcc XM Acc@5

0 33.9 21.3% 4.4% 8.9%
105 32.6 21.5% 3.3% 5.3%
223 34.1 22.7% 3.8% 6.9%
505 35.7 24.3% 5.0% 8.7%
580 37.4 26.5% 7.4% 12.5%

observe that applying Roosterize without additional training achieves moderate

performance (BLEU = 33.9). With some additional training, performance can be

markedly improved (up to a BLEU score of 37.4 when training on all 580 lemmas).

3.8.5 RQ5: Manual Quality Analysis

While generated lemma names may not always match the manually written

ones in the training set, they can still be semantically valid and conform to prevail-

ing conventions. However, such name properties are not reflected in our automatic

evaluation metrics, since these metrics only consider exactly matched tokens as cor-

rect. To obtain a more complete evaluation, we therefore performed a manual quality

analysis of generated lemma names from Roosterize by applying the model trained

on the tier 1 corpus to a Coq project in the tier 3 corpus, the PCM library [138].

This project depends on MathComp, and follows, to a degree, many of the Math-

Comp coding conventions. The PCM library consists of 12 Coq files, and contains

690 lemmas.

We ran Roosterize with the best model (Stmt+CKTree+attn+copy) on

the PCM library to get the top-1 predictions for all lemma names. Overall, the

Roosterize predictions achieved a BLEU score of 36.3 and a fragment accuracy of

17%, and 36 predictions (5%) exactly match the existing lemma names. Next, we

asked the maintainer of the PCM library to evaluate the remaining 654 lemma names

(those that do not match exactly) and send us feedback.
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Table 3.16: Representative examples of Roosterize’s predictions and developer
comments in our qualitative study.

Lemma statement: p s : supp (kfilter p s) = filter p (supp s)

Hand-written: supp_kfilt Roosterize: supp_kfilter
Comment: ✓ Using only kfilt has cognitive overhead.

Lemma statement: g e k v f : path ord k (supp f) ->

foldfmap g e (ins k v f) = g (k, v) (foldfmap g e f)

Hand-written: foldf_ins Roosterize: foldfmap_ins
Comment: ✓ The whole function name is used in the suggested name.

Lemma statement: m : @mapk A A V id m = m

Hand-written: map_id Roosterize: mapk_id
Comment: ✓ The suggested name is less generic than the existing one.

Lemma statement: : transitive (@ord T)

Hand-written: trans Roosterize: ord_trans
Comment: ✓ Useful to add the ord prefix to the name.

Lemma statement: s : sorted (@ord T) s -> sorted (@oleq T) s

Hand-written: sorted_oleq Roosterize: ord_sorted
Comment: The conclusion content should have greater priority.

Lemma statement: x y : total_spec x y (ord x y) (x == y) (ord y x)

Hand-written: totalP Roosterize: ordP
Comment: Maybe this lemma should be named ord_totalP?

Lemma statement: p1 p2 s : kfilter (predI p1 p2) s =

kfilter p1 (kfilter p2 s)

Hand-written: kfilter_predI Roosterize: eq_kfilter
Comment: The suggested name is too generic.

The maintainer spent one day on the task and provided comments on 150 sug-

gested names. We analyzed these comments to identify patterns and trends. He found

that 20% of the suggested names he inspected were of good quality, out of which more

than half were of high quality. Considering that the analysis was of top-1 predictions

excluding exact matches, we find these figures encouraging. For low-quality names,

a clear trend was that they were often “too generic”. Similar observations have been

made about the results from encoder-decoder models in dialog generation [115, 188].

In contrast, useful predictions were typically able to expand or elaborate on name

components that are intuitively too concise, e.g., replacing kfilt with kfilter. Ta-
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ble 3.16 lists examples that are representative of these trends; checkmarks indicate

useful predictions, while crosses indicate unsuitability. We also include comments

from the maintainer. As illustrated by the comments, even predictions considered

unsuitable may contain useful parts.

3.9 Discussion

Our toolchain builds on Coq 8.10.2, and thus we only used projects that sup-

port this version. However, we do not expect any fundamental obstacles in supporting

future Coq releases. Thanks to the use of OCaml metaprogramming via PPX, which

allowed eliding explicit references to the internal structure of Coq datatypes, SerAPI

itself and our extensions to it are expected to require only modest effort to maintain

as Coq evolves.

Our models and toolchain may not be applicable to Coq projects unrelated to

the MathComp family of projects, i.e., projects which do not follow any MathComp

conventions. To the best of our knowledge, MathComp’s coding conventions are the

most recognizable and well-documented in the Coq community; suggesting coding

conventions based on learning from projects unrelated to MathComp are likely to

give more ambiguous results that are difficult to validate manually. Our case study

also included generating predictions for a project outside the MathComp family, the

PCM library, with encouraging results.

Our models are in principle applicable to proof assistants with similar founda-

tions, such as Lean [52]. However, the version at the time of our work, Lean 3, does

not provide serialization of internal data structures as SerAPI does for Coq, which

prevents direct application of our toolchain. Application of our models to proof assis-

tants with different foundations and proof-checking toolchains, such as Isabelle/HOL,

is even less straightforward, although the Archive of Formal Proofs (AFP) contains

many projects with high-quality lemma names [59].
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3.10 Summary

We presented novel techniques, based on neural networks, for learning and

suggesting lemma names in Coq verification projects. We designed and implemented

multi-input encoder-decoder models that use Coq’s internal data structures, including

(chopped) syntax trees and kernel trees (extracted during execution). Additionally,

we constructed a large corpus of high quality Coq code that will enable development

and evaluation of future techniques for Coq. We performed an extensive evaluation of

our models using the corpus. Our results show that the multi-input models, which use

internal data structures (in particular data extracted during execution), substantially

outperform several baselines; the model that uses the lemma statement tokens and the

chopped kernel tree with attention and copy mechanism performs the best. Based on

our findings, we believe that multi-input models leveraging key parts of internal data

structures extracted from execution can play a critical role in producing high-quality

lemma name predictions.
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Chapter 4: Related Work

This chapter presents prior work in the area of ML for SE that are most

related to this dissertation. We first review recent LLMs developed for SE tasks

(Section 4.1), and present related work on combining software execution with ML

models (Section 4.2). Then, we present recent ML models targeting code comple-

tion (Section 4.3), method naming (Section 4.4), enforcing coding conventions (Sec-

tion 4.5), which are closely related to the test completion and lemma naming tasks

studied in this dissertation. Finally, we summarize related work on test generation

and recommendation (Section 4.6) and proof mining and automation (Section 4.7).

More complete reviews of the ML for SE research area can be found in recent sur-

veys [11, 125, 204, 208, 217] and online resources [7, 135].

4.1 LLMs for SE

The application of ML models for SE tasks has been an active research area

in the past decades, which has been growing as the ML models become more pow-

erful: early work could help developers with ranking tasks (e.g., in code comple-

tion [35, 178, 179]) using non-deep learning models, and recent deep learning models

(e.g., RNNs, CNNs, transformers) can better handle code understanding and gen-

eration tasks. Transformer [200] quickly became the most popular deep learning

model architecture because of its ability to scale to a large number of parameters

and large amount of training data. The larger models, called large language models

(LLMs) by the community, present some new “emergent abilities” unseen on smaller

models [210], including multitask learning [170], few-shot learning [34], zero-shot rea-

soning [104], and instruction following [155]. While it is arguable if such emergent

abilities translate to higher intelligence learned by the models [184], LLMs do achieve

better performance in many natural language processing tasks, as well as SE tasks.
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CodeBERT [60] is the first LLM for code, which is based on the BERT

(encoder-only) architecture [54] and pre-trained both bimodal comment-code pairs

data and unimodal code data. GraphCodeBERT [74] extends CodeBERT to incor-

porate code structures in the model, by adding a pre-training task of predicting data

flow graphs. CodeGPT [125] is based on the GPT-2 (decoder-only) architecture [170],

which is more suitable for code generation tasks compared to CodeBERT (with sim-

ilar model size). PLBART [5] is the first encoder-decoder LLM for code, based on

the BART architecture [113], pre-trained on Java and Python code from GitHub and

technical text from StackOverflow. CodeT5 [206] is also an encoder-decoder LLM for

code, based on the T5 architecture [171], and introduces a new pre-training task of

predicting masked code identifiers. CoditT5 [222] extends CodeT5 with another new

pre-training task of recovering code mutations to support code editing.

More recently, researchers and industry companies worked on scaling up the

size of LLMs from millions to billions to trillions of parameters. Codex [40] is a

branch of GPT-3 [34] (which targets natural language processing tasks) and is further

pre-trained on GitHub code, and has been commercialized as the GitHub Copilot

product [67]. AlphaCode [117] is also pre-trained on GitHub code and mainly targets

competition-level coding problems on the Codeforces platform [133]. CodeGen [147,

148] is pre-trained on both natural language and GitHub code and mainly targets

multi-turn program synthesize task. InCoder [62] is a decoder-only LLM pre-trained

not only for left-to-right generation, but also infilling for completing the middle part

of a code snippet given both left and right context. CodeGeeX [225] is pre-trained on

a diverse source of code dataset and is evaluated on a new benchmark, HumanEval-

X, composed of multiple programming languages. StarCoder [116] is an LLMs for

code pre-trained by BigCode (a worldwide team of researchers led by Hugging Face

and ServiceNow), whose goal is to make the model open source and accessible to

the community. Some larger LLMs, such as OpenAI’s GPT-4 [153] and Google’s

Bard [73], are pre-trained on larger amount of natural language and code data and

target both natural language processing and SE tasks.
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4.2 ML + Software Execution

Prior work explored the use of code execution data in ML for SE. Wang et

al. [205] used the similarity of natural language descriptions and execution traces

to detect duplicate bug reports. Wang et al. [202] proposed to train semantic code

embeddings from execution traces, which can be used to improve the performance of

program repair models. Wang and Su [201] blended syntactical and semantic code

embeddings and applied them in a method naming model. Pei et al. [164] developed

TREX for detecting similar binary functions, which learns from the traces of binary

code from forced execution (i.e., directly executing a binary function with randomly

initialized input states and ignoring the control flow). Pi et al. [166] proposed PoEt

that improves the reasoning capabilities of language models by pre-training on code

execution data. Shi et al. [191] proposed to improve code generation models’ outputs

using a minimum Bayes risk decoding algorithm based on execution results.

Recent benchmarks for evaluating ML models, especially LLMs, adopt soft-

ware execution as an approach to check the correctness of models’ predictions, in

complementary to syntax-level similarities (which does not account for functional cor-

rectness) and human evaluation (which can be costly). HumanEval [40] is a bench-

mark of 164 hand-written Python code generation tasks, where the correctness of

each generated code is checked by executing it on a set of test cases (input-output

examples); HumanEval-X [225] is the multi-programming-language extension of Hu-

manEval. MBPP (most basic Python problems) [15] is another benchmark of around

1,000 simple Python code generation tasks with test cases. We also evaluated TeCo

and baselines on our test completion dataset using test execution, by measuring the

percentage of predictions that are compilable and runnable (Chapter 2).

4.3 Code Completion

Code completion helps developers write code faster by predicting the incom-

plete part of a partial code snippet, which is usually the next tokens or statements.
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Early code completion techniques, which have already been popular features in mod-

ern IDEs like Eclipse and IntelliJ IDEA, are based on programming language’s gram-

mar and type analysis and have low prediction accuracy. These limitations moti-

vated researchers to improve code completion by leveraging the context code and

code change histories. Robbes and Lanza [178, 179] improved type-analysis-based

code completion by prioritizing the predictions with recently changed code. Bruch et

al. [35] developed the Best Matching Neighbors algorithm, based on the k-Nearest-

Neighbors algorithm, to suggest APIs with similar structural context during code com-

pletion; Proksch et al. [168] extended this algorithm to use Pattern-Based Bayesian

Networks. Han et al. [76] proposed the abbreviation completion technique which

completes several tokens from abbreviated input characters, using a Hidden Markov

Model. Nguyen et al. [139] developed GraPacc, a graph-based, pattern-oriented,

context-sensitive code completion technique.

Motivated by the study on the naturalness of code [83], researchers explored

using statistical and neural language models for code completion. Raychev et al. [173]

developed Slang, which allows developers to write code with several statements omit-

ted as holes and then completes the holes using a combination of n-gram and RNN

language modes. Li et al. [114] proposed to use a pointer network to help RNN

language models to predict out-of-vocabulary tokens during code completion. Svy-

atkovskiy et al. [195] developed Pythia, an LSTM language model for code completion

focusing on the Python programming language.

LLMs are good at the code completion task because they commonly use

masked language modeling (i.e., predicting the next tokens or infilling missed tokens)

as the primary pre-training task. As such, many recent code completion techniques

are developed on top of LLMs. Svyatkovskiy et al. [196] presented IntelliCode Com-

pose, a code completion framework based on a GPT-2 pre-trained on code which is

distilled for better inference speed. Zhou et al. [226] studied using transfer learning to

improve code completion, by applying pre-trained LLMs on programming languages
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with limited data. Lu et al. [126] augmented an LLM with a code retrieval model

allowing copying and referring to code with similar semantics.

The test completion task proposed in Chapter 2 is closely related to code

completion, but different in the extra context of method under test and unique pro-

gramming style that test code has. The evaluation results in Section 2.7 show that

our test completion model, TeCo, outperforms the state-of-the-art code completion

model, including CodeT5 and Codex, by integrating test execution with ML models.

4.4 Method Naming

Prior work on suggesting names mostly concerns method naming, i.e., sug-

gesting method names based on method bodies. Liu et al. [122] used a similarity

matching algorithm, based on deep representations of Java method names and bodies

learned with Paragraph Vector and CNNs, to detect and fix inconsistent Java method

names. Allamanis et al. [9] used logbilinear neural language models supplemented by

additional manual features to predict Java method and class names. Method names

have also been treated as short, descriptive “summaries” of its body; in this view,

prior work has augmented attention mechanisms in CNNs [10], used sequence-to-

sequence models to learn from descriptions (e.g., Javadoc comments) [64], utilized

the tree-structure of the code in a hierarchical attention network [214], and trained

semantic code embeddings from the method’s execution traces [201]. Researchers have

also applied ML models for method naming to detect and fix inconsistency names in

open-source projects [78, 140].

The lemma naming task proposed in Chapter 3 is similar to method naming.

However, unlike abstract syntax trees in programming languages like Java, the syntax

and kernel trees in Coq contain considerable semantic information that needs to be

extracted for suggesting accurate names. In the work closest to our domain, Aspinall

and Kaliszyk [14] used a k-Nearest-Neighbors multi-label classifier on a corpus for the

HOL Light proof assistant to suggest names of lemmas, but their technique is limited
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to suggests names that exist in the training data and therefore does not generalize. To

our knowledge, Roosterize is the first deep learning generation model for suggesting

names in a proof assistant context.

Related to method naming, researchers also studied the comment generation

task: summarizing method bodies into natural language comments [4, 89, 94, 109,

118, 145, 157–159, 209, 221]. While the outputs are different in terms of length and

content, we expect that combining with execution can also improve the performance

of comment generation ML models.

4.5 Enforcing Coding Conventions

Hindle et al. [83] proposed the concept of the naturalness of software, i.e.,

repetitive patterns in code that can be modeled by statistical and ML models. The

initial study [83] was performed on C and Java code, and later work extended the

concept of naturalness to multiple programming languages [172] and other domains

including proofs [79] and hardware descriptions [110]. Allamanis et al. [8] used the

concept of naturalness and statistical language models to learn and suggest coding

conventions, including names, for Java, and Raychev et al. [174] used conditional

random fields to learn and suggest coding conventions for JavaScript. Roosterize,

introduced in Chapter 3, is the first model for learning and suggesting lemma naming

coding conventions for the Coq proof assistant. We have also developed an RNN-

based model for learning and suggesting formatting coding conventions in Coq [142].

4.6 Test Generation and Recommendation

Existing automatic test generation work includes fuzz/random testing [156,

218, 219], property-based testing [6, 31, 38, 41, 68, 86, 108], search-based testing [61,

77], and combinatorial testing [43]. The typical goal in automated test generation

techniques, e.g., Randoop [156] and EvoSuite [61], is to achieve high code coverage

of the code under test by generating a large amount of tests, either randomly or
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systematically. However, the generated tests would not be added to the manually

written tests in the code repository due to their low quality and the excessive amount.

Some prior work explored improving the quality of the generated tests, for example:

Holmes et al. [86] proposed to use relative LOC to guide the choosing of test generation

targets; Reddy et al. [175] proposed to use reinforcement learning to guide the random

input generator in property-based test generation; Lemieux et al. [111] proposed to

use LLMs to generate test inputs to escape coverage plateaus. So far, these automated

techniques are used only in addition to manually written tests. In contrast, TeCo

focuses on improving developers’ productivity when writing manual tests.

Another disadvantage of the automated test generation approaches is the lack

of test oracles. To remedy that, prior work explored extracting test oracles from

code comments, focusing on test oracles related to exceptional behaviors, null pointer

checks, and boundary conditions [28, 69, 134, 197]. Prior work also explored using

deep learning models for test oracle generation without the use of comments, including

ATLAS [207] and TOGA [55], which are described and used as baselines in our

evaluation on the test oracle generation task in Section 2.6.2. These techniques target

generating/completing test oracles, but TeCo targets completing any part of the

tests, including test oracles.

Tufano et al. [198] developed a test generation technique based on a BART

architecture pre-trained on English and code corpora. Schafer et al. [185] proposed

to use LLMs to generate tests and refine the generated tests that do not execute

successfully. While they target to generate the entire test method as a whole, TeCo

targets to complete one statement at a time, which allows the developer to observe

and control the process of writing a test method.

Prior work also explored improving developers’ productivity in testing by test

recommendation: given a method under test, suggest relevant test methods from

the existing test suite using a recommendation system [95, 165, 169, 227]. These

techniques rely on having a set of relevant existing tests to recommend tests from,
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which is usually not the case when developers are starting a new project or adding

tests to a project without tests. TeCo helps developers by providing completions

while they are writing tests and does not have this limitation.

4.7 Proof Mining and Automation

Müller et al. [136] exported Coq kernel trees as XML strings to translate 49 Coq

projects to the OMDoc theory graph format. Rather than translating documents to an

independently specified format, Roosterize produce lightweight machine-readable

representations of Coq’s internal data structures. Wiedijk et al. [211] collected early

basic statistics on the core libraries of several proof assistants, including Coq and

Isabelle/HOL. Blanchette et al. [26] mined the AFP to gather statistics such as the

average number of lines of Isabelle/HOL specifications and proof scripts. However,

these corpora were not used to perform learning. Heras and Komendantskaya [80–

82] and Komendantskaya et al. [105] used non-deep ML models to identify patterns

in Coq tactic sequences and proof kernel trees, e.g., to find structural similarities

between lemmas and simplify proof development. In contrast, Roosterize captures

similarity among several different representations of lemma statements to generate

lemma names. Hellendoorn et al. [79] studied the naturalness of proofs in the Coq

and HOL Light proof assistants.

Many previous projects also used ML models to directly improve proof au-

tomation in proof assistants. Tools called hammers [27, 48, 162] outsource proof goals

to automatic solvers, and use learning to improve the process of selecting premises

that may be relevant for automatically proving a goal [93, 100, 106, 107, 203]. For

example, [99] perform “lemma mining” on a large corpus for the HOL Light proof

assistant with all primitive inference steps from the Flyspeck project [75], in order to

augment existing human-organized lemmas as premises.

Gauthier et al. [65, 66] used learning of tactics in the context of proof goals to

improve success rates for automated proof techniques in the HOL4 proof assistant.
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[137] used custom encodings of proof state in Isabelle/HOL for learning in order

to predict suitable proof methods to apply. [90] performed learning on Ltac proof

scripts and proof states to perform algebraic rewriting in Coq. [21] presented a deep

learning environment for the HOL Light proof assistant. [215] used learning of Coq

proof scripts, using kernel trees extracted from SerAPI similar to Roosterize does,

to achieve general proof automation for Coq. [183] presented a similar approach for

proof automation for Coq using SerAPI evaluated on the CompCert project.
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Chapter 5: Future Work

We now present our plans for future work that can build upon our contributions

as described in chapters 2 and 3.

Deployment for developers’ usages. We plan to deploy TeCo and Roosterize

as open-source plugins to popular IDEs (e.g., Visual Studio Code and Emacs) to

simplify the usage of our tools for developers. As of writing, we have published a

Visual Studio Code plugin for Roosterize (which we plan to upgrade to use cloud-

hosted LLMs rather than local ML models that require GPUs), and we are working on

a Visual Studio Code plugin for TeCo. There will be multiple design choices to make

about the user interface, such us showing top-1 prediction as inline completion vs.

showing top-k predictions in a dropbox, whether to show ML model’s confidence score,

whether to include an explanation of the prediction (e.g., by pointing to the extracted

code semantics), etc. We plan to make these settings configurable by users, and also

collect user feedbacks to guide the default settings and our future development of ML

for SE tools.

Evaluation of impact on manual effort. To date, our evaluations of TeCo

and Roosterize are based on comparisons with developer-written tests and lemma

names using similarity metrics or human judgments, and executions of the generated

tests. To better understand how much can TeCo and Roosterize reduce manual

effort in testing and verification, we plan to setup user studies where the participants

are asked to write new tests and proofs with/without using our tools. We will design

the user studies based on our prior experience of setting up user studies for our

TrigIt framework [141] and comment update ML model [158]. Specifically, we will

measure metrics including the acceptance rate of the predictions from our tools, the

time spent on writing tests and proofs, the ratio of this time compared to the time

spent on writing code under test/verification, and the quality of the written tests and

proofs. By analyzing the results and comparing them with our current evaluation
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results, we will know if and how the improvements in the automated metrics map to

reductions in manual effort.

Usage of LLMs for testing and verification. There is no conceptual difficulty in

replacing Roosterize’s multi-input RNN model with LLMs, or upgrading TeCo’s

underlying model (CodeT5) to recent larger LLMs. As more recent LLMs are reported

to outperform previous models in many (general) code completion and summarization

tasks, we expect using LLMs will likely improve the accuracy of our tools. LLMs pre-

trained on vast amount of code are shown to make less syntax errors [15], which may

require us to shift the focus of using execution, e.g., from preventing compilation

errors to preventing deeper runtime errors.

Usage of execution in pre-training LLMs. Although the pre-training dataset of

recent LLMs include large amount of software data, the pre-training process still treats

code as non-executable natural language text. We plan to explore using execution,

especially the execution of tests and proofs, to improve the pre-training of LLMs.

Execution can be added as new pre-training tasks, e.g., predicting the types and values

of variables after executing a code snippet, which can improve the LLMs’ ability in

understanding and generating code with complex control and data flows. On the other

hand, execution can be used to improve the quality of the pre-training dataset, e.g.,

by filtering out code that does not compile, and by prioritizing trustworthy software

projects that has high-quality tests and proofs.

File- and project-level predictions. TeCo considers one test method at a time,

and Roosterize considers one lemma at a time. However, the structure of all tests

or lemmas in a file/project should also follow conventions. For example, in Java,

developers typically write one test class (test suite) for each class under test, and

each test class contains several test methods; different test classes and test methods

should not overlap in their fault detection capabilities. In the future, we plan to

design ML models that make predictions to tests and proofs at file level and project

level. Such models should not only suggest adding new tests/proofs for the part of
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code that is not covered by existing tests/proofs, but also suggest removing redundant

tests/proofs and reorganization of badly-designed tests/proofs.

Reducing manual effort on maintenance. Both TeCo and Roosterize are

designed to make predictions from scratch, i.e., assuming the test method or the

name of the lemma does not exist before using the ML model. In practice, code

constantly evolves, and a lot of manual effort is spent on maintaining existing tests

and proofs to keep them up-to-date with the code changes. We plan to design ML

models that suggest edits to tests and proofs, based on our experience to support

the maintenance of code comments [158, 222]. As the integration with execution is

vital for the accuracy of ML models for testing and verification, we plan to utilize

evolving code execution data, e.g., diff of execution data when software evolves, and

the evolution of the program state during the execution.

Aligning tests and proofs to expected software behavior. We assumed that the

code under test/verification is correct when generating/summarizing tests and proofs.

This may not be true in practice because developers may want to generate tests and

proofs to detect bugs (i.e., that should fail on the buggy version of the code), or may

want to write tests and proofs before the code under test/verification (e.g., in test-

driven development). To address these needs, we plan to explore designing ML models

that generate tests and proofs not conditioning on the code under test/verification,

but conditioning on expected software behavior, which can be extracted from software

requirements, documentations, bug reports, etc.

Generalization to new programming languages and paradigms. Over time,

new programming languages (e.g., Go, Python, Rust) are becoming popular, and new

testing and verification paradigms (e.g., inline testing [123, 124], which we proposed

for testing individual statements) are invented. ML models can help developers to es-

tablish good testing and verification standards in these new languages and paradigms.

However, the ML models trained on existing tests and proofs may not generalize well

to new languages and paradigms, which typically have limited data for re-training the
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models. We plan to explore using LLMs with few-shot/zero-shot learning to address

this limitation. Another direction that we are exploring is to develop ML models

for translating and maintaining code with tests/proofs across different programming

languages [223].

Improving static and dynamic analyses with ML models. Although static

and dynamic analyses can help extract code semantics, they have some problems

that affect the effectiveness of using them with ML models. Static analysis needs to

be carefully tuned considering the precision-recall trade-off, for example, to statically

infer the call graph in Java, ignoring the reflection mechanism may miss some caller-

callee relationships, but considering it leads to many false positives. On the other

hand, dynamic analysis can be slow when extracting too much code semantics, for

example, recording each method call and their parameter values incurs excessive

overhead, thus a practical technique would only record a (small) subset of method

calls. The exact steps of static and dynamic analyses need to be carefully designed

to extract what is needed for the ML models without causing too much accuracy

loss and time overhead. This is currently designed manually with the help of domain

experts in TeCo and Roosterize, but in the future we plan to explore automatically

designing and tuning the static and dynamic analyses with ML models.
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Chapter 6: Conclusion

Software testing and verification are essential for keeping software systems

reliable and safe to use, but can require lots of manual effort. This dissertation

proposes to use ML models integrated with software execution to reduce the manual

effort in writing tests and proofs.

First, we presented TeCo for test completion, i.e., completing next statements

when writing tests. TeCo exploits code semantics extracted from test execution

results and execution context to aid ML models in reasoning about code execution.

TeCo also reranks ML model’s predictions by executing the predicted statements,

to prioritize functionally correct predictions. Compared to existing code completion

models that use only syntax-level data (including LLMs trained on massive code

dataset), TeCo improves the accuracy of test completion by 29%.

Second, we presented Roosterize to suggest lemma names when developers

write proofs using proof assistants such as Coq. Consistent coding conventions are

important as verification projects based on proof assistants become larger, but man-

ually enforcing the conventions can be costly. Roosterize is the first ML model

for automatically learning and suggesting lemma names. Existing ML models extract

and summarize information extracted from only code tokens, which is not suitable for

Coq where the lemma names should exhibit semantic meanings that are not explicit

in code tokens. Roosterize leverages the runtime representations of the lemma

from execution, including syntax trees from the parser and elaborated terms from the

kernel. Roosterize improves the accuracy of lemma naming by 39%.

With the rapid growth of new ML techniques (especially LLMs) and available

sources of software testing and verification corpora, we envision that ML models

integrated with execution will soon play an important role in assisting developers in

testing and verification to build trustworthy software systems.
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hen, François Garillot, Stéphane Le Roux, Assia Mahboubi, Russell O’Connor,

Sidi Ould Biha, Ioana Pasca, Laurence Rideau, Alexey Solovyev, Enrico Tassi,
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Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries. Star-

Coder: May the source be with you! arXiv preprint arXiv:2305.06161, 2023.

https://doi.org/10.48550/arXiv.2305.06161.

[117] Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser,
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