
Debugging the Performance of Maven’s Test Isolation:
Experience Report

Pengyu Nie 1 Ahmet Celik 2 Matthew Coley 3

Aleksandar Milicevic 4 Jonathan Bell 3 Milos Gligoric 1

1The University of Texas at Austin 2Facebook, Inc.
3George Mason University 4Microsoft

ISSTA 2020



Need for Test Isolation

Code
Under
Test

test0

test1

test2

testn

. . .

test0

test2

test1

testn

. . .

Tests in industry are riddled with flakiness
tests may pass or fail nondeterministically without code changes

A common practice to combat flaky tests is to run them in isolation
from each other, to eliminate test-order dependencies

1 / 20



Test Isolation Introduces Substantial Overhead

Absolute Isolation
run each test in a fresh VM

No Isolation
run all tests in one process

more isolation
higher cost
←−

less isolation
lower cost

−→

Process-Level Isolation
run each test in its own process

For Java: forking a separate JVM process for each test case

Process-level test isolation still introduces substantial overhead

Potential sources: startup cost, inter process communication

2 / 20



Test Isolation Introduces Substantial Overhead

Absolute Isolation
run each test in a fresh VM

No Isolation
run all tests in one process

more isolation
higher cost
←−

less isolation
lower cost

−→

Process-Level Isolation
run each test in its own process

For Java: forking a separate JVM process for each test case

Process-level test isolation still introduces substantial overhead

Potential sources: startup cost, inter process communication

2 / 20



Test Isolation Introduces Substantial Overhead

Absolute Isolation
run each test in a fresh VM

No Isolation
run all tests in one process

more isolation
higher cost
←−

less isolation
lower cost

−→

Process-Level Isolation
run each test in its own process

For Java: forking a separate JVM process for each test case

Process-level test isolation still introduces substantial overhead

Potential sources: startup cost, inter process communication

2 / 20



Test Isolation Introduces Substantial Overhead

Absolute Isolation
run each test in a fresh VM

No Isolation
run all tests in one process

more isolation
higher cost
←−

less isolation
lower cost

−→

Process-Level Isolation
run each test in its own process

For Java: forking a separate JVM process for each test case

Process-level test isolation still introduces substantial overhead

Potential sources: startup cost, inter process communication

2 / 20



Test Isolation Introduces Substantial Overhead

Absolute Isolation
run each test in a fresh VM

No Isolation
run all tests in one process

more isolation
higher cost
←−

less isolation
lower cost

−→

Process-Level Isolation
run each test in its own process

For Java: forking a separate JVM process for each test case

Process-level test isolation still introduces substantial overhead

Potential sources: startup cost, inter process communication

2 / 20



High Overhead of Test Isolation in Maven

We performed an exploratory study to measure per-test
overhead introduced by the build systems
Execute test: Thread.sleep(250)

Overhead = actual time − 250ms

Build System Overhead (ms)
Ant 1.10.6 259
Gradle 5.6.1 412
Maven (Surefire 3.0.0-M3) 596

Surprising findings:

Very different overhead among different build systems
Maven has huge overhead compared to others

3 / 20



High Overhead of Test Isolation in Maven

We performed an exploratory study to measure per-test
overhead introduced by the build systems
Execute test: Thread.sleep(250)

Overhead = actual time − 250ms

Build System Overhead (ms)
Ant 1.10.6 259
Gradle 5.6.1 412
Maven (Surefire 3.0.0-M3) 596

Surprising findings:
Very different overhead among different build systems
Maven has huge overhead compared to others

3 / 20



Contributions

ForkScript: a novel technique to minimize inter process
communication overhead in test isolation, that saved test
execution time by 50%

Guided by the development of ForkScript, we found and fixed
a performance bug in Maven’s test execution, and our patch
has been accepted and merged in Maven

Evaluation of ForkScript and the Maven with our patch on
29 open-source projects totaling 2M LOC

Implications and lessons learned

4 / 20



Maven’s Test Execution: Users’ View

Maven uses Surefire plugin to manage test execution
mvn test: executes tests with no isolation

JVM
t1, t2, t3, t4

(a) mvn test (default behavior)
time

Test isolation with −DreuseForks and −DforkCount

JVM
t1

JVM
t2

JVM
t3

JVM
t4

(b) -DreuseForks=false -DforkCount=1

JVM
t1

JVM
t2

JVM
t3

JVM
t4

(c) -DreuseForks=false -DforkCount=2

time

time

5 / 20



Maven’s Test Execution: Users’ View

Maven uses Surefire plugin to manage test execution
mvn test: executes tests with no isolation

JVM
t1, t2, t3, t4

(a) mvn test (default behavior)
time

Test isolation with −DreuseForks and −DforkCount

JVM
t1

JVM
t2

JVM
t3

JVM
t4

(b) -DreuseForks=false -DforkCount=1

JVM
t1

JVM
t2

JVM
t3

JVM
t4

(c) -DreuseForks=false -DforkCount=2

time

time

5 / 20



Maven’s Test Execution: Users’ View

Maven uses Surefire plugin to manage test execution
mvn test: executes tests with no isolation

JVM
t1, t2, t3, t4

(a) mvn test (default behavior)
time

Test isolation with −DreuseForks and −DforkCount

JVM
t1

JVM
t2

JVM
t3

JVM
t4

(b) -DreuseForks=false -DforkCount=1

JVM
t1

JVM
t2

JVM
t3

JVM
t4

(c) -DreuseForks=false -DforkCount=2

time

time

5 / 20



Maven’s Test Execution: Users’ View

Maven uses Surefire plugin to manage test execution
mvn test: executes tests with no isolation

JVM
t1, t2, t3, t4

(a) mvn test (default behavior)
time

Test isolation with −DreuseForks and −DforkCount

JVM
t1

JVM
t2

JVM
t3

JVM
t4

(b) -DreuseForks=false -DforkCount=1

JVM
t1

JVM
t2

JVM
t3

JVM
t4

(c) -DreuseForks=false -DforkCount=2

time

time

5 / 20



Maven’s Test Execution: Behind the Scenes

ForkStarter

JVM

...

Executor config

ForkBooter

JVM

Surefire Classes

JUnit Classes

App Classes(1)
SERIALIZE

(3)
DESERIALIZE

(2) SPAWN

(4)
WAIT results

Two key classes: ForkStarter and ForkBooter

ForkStarter creates an Executor (thread pool)
For each test:

ForkStarter serializes configurations to file
ForkStarter spawns a child JVM w/ main class ForkBooter
ForkBooter deserializes configurations from file
ForkBooter executes the test with JUnit
ForkStarter waits for ForkBooter to send a “goodbye”
signal when the test finishes

6 / 20



Maven’s Test Execution: Behind the Scenes

ForkStarter

JVM

...

Executor config

ForkBooter

JVM

Surefire Classes

JUnit Classes

App Classes(1)
SERIALIZE

(3)
DESERIALIZE

(2) SPAWN

(4)
WAIT results

Two key classes: ForkStarter and ForkBooter
ForkStarter creates an Executor (thread pool)

For each test:

ForkStarter serializes configurations to file
ForkStarter spawns a child JVM w/ main class ForkBooter
ForkBooter deserializes configurations from file
ForkBooter executes the test with JUnit
ForkStarter waits for ForkBooter to send a “goodbye”
signal when the test finishes

6 / 20



Maven’s Test Execution: Behind the Scenes

ForkStarter

JVM

...

Executor config

ForkBooter

JVM

Surefire Classes

JUnit Classes

App Classes(1)
SERIALIZE

(3)
DESERIALIZE

(2) SPAWN

(4)
WAIT results

Two key classes: ForkStarter and ForkBooter
ForkStarter creates an Executor (thread pool)
For each test:

ForkStarter serializes configurations to file

ForkStarter spawns a child JVM w/ main class ForkBooter
ForkBooter deserializes configurations from file
ForkBooter executes the test with JUnit
ForkStarter waits for ForkBooter to send a “goodbye”
signal when the test finishes

6 / 20



Maven’s Test Execution: Behind the Scenes

ForkStarter

JVM

...

Executor config

ForkBooter

JVM

Surefire Classes

JUnit Classes

App Classes(1)
SERIALIZE

(3)
DESERIALIZE

(2) SPAWN

(4)
WAIT results

Two key classes: ForkStarter and ForkBooter
ForkStarter creates an Executor (thread pool)
For each test:

ForkStarter serializes configurations to file
ForkStarter spawns a child JVM w/ main class ForkBooter

ForkBooter deserializes configurations from file
ForkBooter executes the test with JUnit
ForkStarter waits for ForkBooter to send a “goodbye”
signal when the test finishes

6 / 20



Maven’s Test Execution: Behind the Scenes

ForkStarter

JVM

...

Executor config

ForkBooter

JVM

Surefire Classes

JUnit Classes

App Classes(1)
SERIALIZE

(3)
DESERIALIZE

(2) SPAWN

(4)
WAIT results

Two key classes: ForkStarter and ForkBooter
ForkStarter creates an Executor (thread pool)
For each test:

ForkStarter serializes configurations to file
ForkStarter spawns a child JVM w/ main class ForkBooter
ForkBooter deserializes configurations from file

ForkBooter executes the test with JUnit
ForkStarter waits for ForkBooter to send a “goodbye”
signal when the test finishes

6 / 20



Maven’s Test Execution: Behind the Scenes

ForkStarter

JVM

...

Executor config

ForkBooter

JVM

Surefire Classes

JUnit Classes

App Classes(1)
SERIALIZE

(3)
DESERIALIZE

(2) SPAWN

(4)
WAIT results

Two key classes: ForkStarter and ForkBooter
ForkStarter creates an Executor (thread pool)
For each test:

ForkStarter serializes configurations to file
ForkStarter spawns a child JVM w/ main class ForkBooter
ForkBooter deserializes configurations from file
ForkBooter executes the test with JUnit
ForkStarter waits for ForkBooter to send a “goodbye”
signal when the test finishes

6 / 20



Maven’s Test Execution: Behind the Scenes

ForkStarter

JVM

...

Executor config

ForkBooter

JVM

Surefire Classes

JUnit Classes

App Classes(1)
SERIALIZE

(3)
DESERIALIZE

(2) SPAWN

(4)
WAIT results

Inter process communication (IPC) is costly
Using thread pool and executors to manage processes
Exchanging configuration with new JVMs via (de)serialization
Class loading of Surefire’s classes
“Pumping” input/output between the JVMs

6 / 20



Maven’s Test Execution: Behind the Scenes

ForkStarter

JVM

...

Executor config

ForkBooter

JVM

Surefire Classes

JUnit Classes

App Classes(1)
SERIALIZE

(3)
DESERIALIZE

(2) SPAWN

(4)
WAIT results

Inter process communication (IPC) is costly
Using thread pool and executors to manage processes
Exchanging configuration with new JVMs via (de)serialization
Class loading of Surefire’s classes
“Pumping” input/output between the JVMs

6 / 20



ForkScript

ForkScript generates a single on-the-fly specialized
execution script for running all configured tests and
collecting test results
No IPC between the build system and test processes
Relies on operating system’s process management

ForkScript
(tests, config)

Build System
#!/bin/bash
java -cp ‘classpath forkscript.JUnitRunner t1 ‘config
java -cp ‘classpath forkscript.JUnitRunner t2 ‘config
java -cp ‘classpath forkscript.JUnitRunner t3 ‘config
java -cp ‘classpath forkscript.JUnitRunner t4 ‘config

on-the-fly script (simplified)

JVM

JVM

JVM

JVM

7 / 20



ForkScript Scripts Examples

ForkScript supports test isolation, sequential and parallel testing

JVM
t1, t2, t3, t4

(a) mvn test (default behavior)

JVM
t1

JVM
t2

JVM
t3

JVM
t4

(b) -DreuseForks=false -DforkCount=1

JVM
t1

JVM
t2

JVM
t3

JVM
t4

(c) -DreuseForks=false -DforkCount=2

time
#!/bin/bash
java -cp ‘classpath forkscript.JUnitRunner t1 t2 t3 t4 ‘config

time

#!/bin/bash
java -cp ‘classpath forkscript.JUnitRunner t1 ‘config
java -cp ‘classpath forkscript.JUnitRunner t2 ‘config
java -cp ‘classpath forkscript.JUnitRunner t3 ‘config
java -cp ‘classpath forkscript.JUnitRunner t4 ‘config

time

#!/bin/bash
java -cp ‘classpath forkscript.JUnitRunner t1 ‘config &
java -cp ‘classpath forkscript.JUnitRunner t2 ‘config &
wait
java -cp ‘classpath forkscript.JUnitRunner t3 ‘config &
java -cp ‘classpath forkscript.JUnitRunner t4 ‘config &
wait

8 / 20



ForkScript Scripts Examples

ForkScript supports test isolation, sequential and parallel testing

JVM
t1, t2, t3, t4

(a) mvn test (default behavior)

JVM
t1

JVM
t2

JVM
t3

JVM
t4

(b) -DreuseForks=false -DforkCount=1

JVM
t1

JVM
t2

JVM
t3

JVM
t4

(c) -DreuseForks=false -DforkCount=2

time
#!/bin/bash
java -cp ‘classpath forkscript.JUnitRunner t1 t2 t3 t4 ‘config

time

#!/bin/bash
java -cp ‘classpath forkscript.JUnitRunner t1 ‘config
java -cp ‘classpath forkscript.JUnitRunner t2 ‘config
java -cp ‘classpath forkscript.JUnitRunner t3 ‘config
java -cp ‘classpath forkscript.JUnitRunner t4 ‘config

time

#!/bin/bash
java -cp ‘classpath forkscript.JUnitRunner t1 ‘config &
java -cp ‘classpath forkscript.JUnitRunner t2 ‘config &
wait
java -cp ‘classpath forkscript.JUnitRunner t3 ‘config &
java -cp ‘classpath forkscript.JUnitRunner t4 ‘config &
wait

8 / 20



ForkScript Scripts Examples

ForkScript supports test isolation, sequential and parallel testing

JVM
t1, t2, t3, t4

(a) mvn test (default behavior)

JVM
t1

JVM
t2

JVM
t3

JVM
t4

(b) -DreuseForks=false -DforkCount=1

JVM
t1

JVM
t2

JVM
t3

JVM
t4

(c) -DreuseForks=false -DforkCount=2

time
#!/bin/bash
java -cp ‘classpath forkscript.JUnitRunner t1 t2 t3 t4 ‘config

time

#!/bin/bash
java -cp ‘classpath forkscript.JUnitRunner t1 ‘config
java -cp ‘classpath forkscript.JUnitRunner t2 ‘config
java -cp ‘classpath forkscript.JUnitRunner t3 ‘config
java -cp ‘classpath forkscript.JUnitRunner t4 ‘config

time

#!/bin/bash
java -cp ‘classpath forkscript.JUnitRunner t1 ‘config &
java -cp ‘classpath forkscript.JUnitRunner t2 ‘config &
wait
java -cp ‘classpath forkscript.JUnitRunner t3 ‘config &
java -cp ‘classpath forkscript.JUnitRunner t4 ‘config &
wait

8 / 20



Performance Profiling Maven

ForkScript provides a barebones, stripped down mechanism for
test isolation, but doesn’t support all configuration options

We also carefully profiled Maven to identify the source of the
additional overhead

9 / 20



Performance Profiling Maven: Setup

1. Start Test

2. Forked Runner 
Starts

3. Forked Runner 
Exits

4. Finished

fork() waiting

Run Test

T1 T2 T3

Main 
Process

Test Runner 
Process

T1: between when the build system begins running a test
until the child process starts
T2: between when the child process starts until the child
process terminates
T3: between when the child process terminates until when
the build system determines the test has completed

10 / 20



Performance Profiling Maven: Findings

1. Start Test

2. Forked Runner 
Starts

3. Forked Runner 
Exits

4. Finished

fork() waiting

Run Test

T1 T2 T3

Main 
Process

Test Runner 
Process

Build System T1[ms] T2[ms] T3[ms]
Ant 1.10.6 250 253 9
Gradle 5.6.1 395 253 17
Maven (Surefire 3.0.0-M3) 244 253 352

Performance bug in Maven: child process keeps reading from
〈stdin〉, so it cannot be interrupted (terminated) immediately

11 / 20



Performance Profiling Maven: Findings

1. Start Test

2. Forked Runner 
Starts

3. Forked Runner 
Exits

4. Finished

fork() waiting

Run Test

T1 T2 T3

Main 
Process

Test Runner 
Process

Build System T1[ms] T2[ms] T3[ms]
Ant 1.10.6 250 253 9
Gradle 5.6.1 395 253 17
Maven (Surefire 3.0.0-M3) 244 253 352

Performance bug in Maven: child process keeps reading from
〈stdin〉, so it cannot be interrupted (terminated) immediately

11 / 20



Performance Profiling Maven: Patch

To fix the performance bug, we went over many iterations with
Maven developers for several months

First, we prepared a large patch that removed all sources of the
overhead, but it was hard for developers to review and integrate

Then, we prepared another small patch that changed several lines,
was easy to inspect, but didn’t remove all sources of overhead

The small patch was merged to Maven Surefire 3.0.0-M5

Build System T1[ms] T2[ms] T3[ms]
Maven (Surefire 3.0.0-M3) 244 253 352
Maven (With our patch) 217 252 17

12 / 20



Performance Profiling Maven: Patch

To fix the performance bug, we went over many iterations with
Maven developers for several months

First, we prepared a large patch that removed all sources of the
overhead, but it was hard for developers to review and integrate

Then, we prepared another small patch that changed several lines,
was easy to inspect, but didn’t remove all sources of overhead

The small patch was merged to Maven Surefire 3.0.0-M5

Build System T1[ms] T2[ms] T3[ms]
Maven (Surefire 3.0.0-M3) 244 253 352
Maven (With our patch) 217 252 17

12 / 20



Performance Profiling Maven: Patch

To fix the performance bug, we went over many iterations with
Maven developers for several months

First, we prepared a large patch that removed all sources of the
overhead, but it was hard for developers to review and integrate

Then, we prepared another small patch that changed several lines,
was easy to inspect, but didn’t remove all sources of overhead

The small patch was merged to Maven Surefire 3.0.0-M5

Build System T1[ms] T2[ms] T3[ms]
Maven (Surefire 3.0.0-M3) 244 253 352
Maven (With our patch) 217 252 17

12 / 20



Performance Profiling Maven: Patch

To fix the performance bug, we went over many iterations with
Maven developers for several months

First, we prepared a large patch that removed all sources of the
overhead, but it was hard for developers to review and integrate

Then, we prepared another small patch that changed several lines,
was easy to inspect, but didn’t remove all sources of overhead

The small patch was merged to Maven Surefire 3.0.0-M5

Build System T1[ms] T2[ms] T3[ms]
Maven (Surefire 3.0.0-M3) 244 253 352
Maven (With our patch) 217 252 17

12 / 20



Evaluation: Research Questions

RQ1 What are the performance improvements obtained by
ForkScript compared to the unpatched Maven?

RQ2 How does the improvement scale as the number of
concurrent processes increase?

RQ3 How does the patched Maven compare to ForkScript?

13 / 20



Evaluation: Subjects

29 projects used in recent testing literature, and:
use Maven build system
have non-trivial number of tests
have tests whose execution time is non-negligible
successfully build at its latest revision

LOC: total 2.12M, average 73.0K
number of test classes: total 6.14K, average 211
number of test methods: total 209K, average 7.22K

14 / 20



Evaluation: Subjects

29 projects used in recent testing literature, and:
use Maven build system
have non-trivial number of tests
have tests whose execution time is non-negligible
successfully build at its latest revision

LOC: total 2.12M, average 73.0K
number of test classes: total 6.14K, average 211
number of test methods: total 209K, average 7.22K

14 / 20



Evaluation: Setup

For each project:

Clone the project

Execute mvn install to download all necessary dependencies,
then switch to offline mode

Run tests using {ForkScript, unpatched Maven, patched
Maven} and measure time

15 / 20



Evaluation Results: Sequential Runs

RQ1 What are the performance improvements obtained by
ForkScript compared to the unpatched Maven?

mvn test -DreuseForks=false -DforkCount=1
Tmvn: Maven; T FS : ForkScript; RT = Tmvn−TFS

Tmvn × 100%

Tmvn[s] T FS [s] RT
Avg. 154.66 80.74
Σ 4,485.16 2,341.60 50%

ForkScript reduces testing time by 50% on average and up to 75%
Projects with smaller tests (lower time per test) benefit more

16 / 20



Evaluation Results: Sequential Runs

RQ1 What are the performance improvements obtained by
ForkScript compared to the unpatched Maven?

mvn test -DreuseForks=false -DforkCount=1
Tmvn: Maven; T FS : ForkScript; RT = Tmvn−TFS

Tmvn × 100%

Tmvn[s] T FS [s] RT
Avg. 154.66 80.74
Σ 4,485.16 2,341.60 50%

ForkScript reduces testing time by 50% on average and up to 75%
Projects with smaller tests (lower time per test) benefit more

16 / 20



Evaluation Results: Parallel Runs

RQ2 How does the improvement scale as the number of
concurrent processes increase?

mvn test -DreuseForks=false -DforkCount=2
Tmvn: Maven; T FS : ForkScript; RT = Tmvn−TFS

Tmvn × 100%

Tmvn[s] T FS [s] RT
Avg. 72.02 49.88
Σ 2,088.81 1,446.70 32%

ForkScript reduces testing time by 32% on average and up to 63%
The reduction in savings compared to sequential runs is due to total
execution time approaches theoretical maximum (i.e., time to
execute the longest test)

17 / 20



Evaluation Results: Parallel Runs

RQ2 How does the improvement scale as the number of
concurrent processes increase?

mvn test -DreuseForks=false -DforkCount=2
Tmvn: Maven; T FS : ForkScript; RT = Tmvn−TFS

Tmvn × 100%

Tmvn[s] T FS [s] RT
Avg. 72.02 49.88
Σ 2,088.81 1,446.70 32%

ForkScript reduces testing time by 32% on average and up to 63%
The reduction in savings compared to sequential runs is due to total
execution time approaches theoretical maximum (i.e., time to
execute the longest test)

17 / 20



Evaluation Results: Comparison with Patched Maven

RQ3 How does the patched Maven compare to ForkScript?
mvn test -DreuseForks=false
Fork 1 : -DforkCount=1; Fork 2 : -DforkCount=2
Tmvn: Maven; T FS : ForkScript; T new : patched Maven

Fork 1 Fork 2
Tmvn[s] T FS [s] T new[s] Tmvn[s] T FS [s] T new[s]

Avg. 154.66 80.74 95.88 72.02 49.88 55.45
Σ 4,485.16 2,341.60 2,780.54 2,088.81 1,446.70 1,608.06

Patched Maven substantially outperforms the non-patched version
ForkScript slightly outperforms patched Maven

18 / 20



Evaluation Results: Comparison with Patched Maven

RQ3 How does the patched Maven compare to ForkScript?
mvn test -DreuseForks=false
Fork 1 : -DforkCount=1; Fork 2 : -DforkCount=2
Tmvn: Maven; T FS : ForkScript; T new : patched Maven

Fork 1 Fork 2
Tmvn[s] T FS [s] T new[s] Tmvn[s] T FS [s] T new[s]

Avg. 154.66 80.74 95.88 72.02 49.88 55.45
Σ 4,485.16 2,341.60 2,780.54 2,088.81 1,446.70 1,608.06

Patched Maven substantially outperforms the non-patched version
ForkScript slightly outperforms patched Maven

18 / 20



Implications and Lessons Learned

Detect performance bugs through differential testing
Performance bugs are notoriously difficult to find, but when
there are alternative systems that accomplish the same goal,
differential testing can help to reveal them

Find simple fixes that can be integrated today

Our patch is already helping developers while the long-term fix
(to completely remove 〈stdin〉) is still going on

Researchers: engage in the open source community

Bug fixes, pull requests, Slack channel, etc.
Find a balance between research novelty and practical impact

Researchers: continue testing of build systems

19 / 20



Implications and Lessons Learned

Detect performance bugs through differential testing
Performance bugs are notoriously difficult to find, but when
there are alternative systems that accomplish the same goal,
differential testing can help to reveal them

Find simple fixes that can be integrated today
Our patch is already helping developers while the long-term fix
(to completely remove 〈stdin〉) is still going on

Researchers: engage in the open source community

Bug fixes, pull requests, Slack channel, etc.
Find a balance between research novelty and practical impact

Researchers: continue testing of build systems

19 / 20



Implications and Lessons Learned

Detect performance bugs through differential testing
Performance bugs are notoriously difficult to find, but when
there are alternative systems that accomplish the same goal,
differential testing can help to reveal them

Find simple fixes that can be integrated today
Our patch is already helping developers while the long-term fix
(to completely remove 〈stdin〉) is still going on

Researchers: engage in the open source community
Bug fixes, pull requests, Slack channel, etc.
Find a balance between research novelty and practical impact

Researchers: continue testing of build systems

19 / 20



Implications and Lessons Learned

Detect performance bugs through differential testing
Performance bugs are notoriously difficult to find, but when
there are alternative systems that accomplish the same goal,
differential testing can help to reveal them

Find simple fixes that can be integrated today
Our patch is already helping developers while the long-term fix
(to completely remove 〈stdin〉) is still going on

Researchers: engage in the open source community
Bug fixes, pull requests, Slack channel, etc.
Find a balance between research novelty and practical impact

Researchers: continue testing of build systems

19 / 20



Conclusions

Demystified why test isolation is costly

Found a performance bug in Maven build system related to IPC

ForkScript, a research prototype that minimizes IPC to speed up
test isolation

Evaluation on 29 open-source projects totaling 2M LOC

Our patch was accepted and merged to Maven, which is already
saving significant test execution time for many developers

Pengyu Nie
pynie@utexas.edu

20 / 20

mailto:pynie@utexas.edu

	Introduction
	Technique
	Evaluation
	Discussion
	Conclusion

