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Abstract—Naming conventions are an important concern in
large verification projects using proof assistants, such as Coq.
In particular, lemma names are used by proof engineers to
effectively understand and modify Coq code. However, providing
accurate and informative lemma names is a complex task,
which is currently often carried out manually. Even when
lemma naming is automated using rule-based tools, generated
names may fail to adhere to important conventions not specified
explicitly. We demonstrate a toolchain, dubbed ROOSTERIZE,
which automatically suggests lemma names in Coq projects.
ROOSTERIZE leverages a neural network model trained on
existing Coq code, thus avoiding manual specification of naming
conventions. To allow proof engineers to conveniently access
suggestions from ROOSTERIZE during Coq project development,
we integrated the toolchain into the popular Visual Studio Code
editor. Our evaluation shows that ROOSTERIZE substantially
outperforms strong baselines for suggesting lemma names and
is useful in practice. The demo video for ROOSTERIZE can be
viewed at: https://youtu.be/HZ5ac7Q14rc.

Index Terms—Coq, lemma names, neural networks

I. INTRODUCTION

In large software projects with many contributors, names
of methods and classes are important for code comprehen-
sion and modification. Open source projects often document
their naming conventions carefully, impose them on proposed
contributions, and willingly accept naming fixes [1].

The Coq proof assistant [2] is increasingly used to de-
velop trustworthy software systems, e.g., compilers [3] and
distributed systems [4]. As such verification projects grow
in scope and size, naming conventions become an important
concern. In particular, proof engineers use lemma names to
effectively understand and modify code [5].

In contrast to method names in Java-like languages, which
tend to use camel case and regular English words (e.g.,
openServerConnection), Coq lemma names often mix
camel case and underscores with heavily abbreviated termi-
nology from logic and advanced mathematics, which makes
the naming task more difficult. For example, in the Math-
ematical Components (MathComp) Coq library, the lemma
name extprod_mulgA is used to express “associativity of
multiplication operations in external product groups”, i.e., a
property of abstract algebra. This meaning is obtained by first
decomposing the name into extprod, mul, g, and A, and
then consulting the MathComp naming conventions [6].

Currently, documentation and enforcement of lemma nam-
ing conventions in Coq projects is largely a manual process.
While some aspects of naming conventions can be captured

by rule-based tools, specification of rules is tedious and often
incomplete. Moreover, most large Coq projects use mutually
incompatible lemma naming schemes.

We present ROOSTERIZE, a toolchain which automatically
suggests Coq lemma names. ROOSTERIZE learns naming
conventions by leveraging neural networks trained on existing
Coq code. The deep learning and suggestion processes use
multiple representations of lemma statements, including syntax
trees and Coq kernel trees (also called elaborated terms) [7].
In essence, ROOSTERIZE consists of (1) a set of components
written in OCaml that interact with Coq or directly process
information extracted from Coq, and (2) a set of components
written in Python that perform name learning and generation.
The first set of components is based on the SerAPI library [8]
for serialization of Coq data, while the second set of compo-
nents is based on the PyTorch deep learning framework [9]
and the OpenNMT library [10].

The core of ROOSTERIZE is command-line based. Although
valuable, this does not provide a convenient interface for proof
engineers as they are stating and proving new Coq lemmas.
Hence, we integrated the toolchain into Visual Studio Code
(VSCode) [11], a popular editor for Coq source code.

We evaluated an earlier version of ROOSTERIZE using a
corpus derived from the MathComp family of Coq projects,
finding that the toolchain significantly outperforms strong
baselines on automatic metrics [7]. Moreover, we found
encouraging results in a qualitative case study where the
maintainer of a medium-sized Coq project manually evaluated
over 150 name suggestions generated by ROOSTERIZE.

The earlier toolchain version provided few conveniences
beyond basic name suggestions via the command line, and
did not include any editor integration. In addition to the novel
integration with VSCode, the toolchain version presented here
provides a significantly more automated installation process
and supports system-level configuration of Coq project and
name suggestion parameters, making it suitable for wider use
by proof engineers.

Our code, documentation, and pre-trained models are pub-
licly available on GitHub:
https://github.com/EngineeringSoftware/roosterize.

II. TECHNIQUE AND IMPLEMENTATION

In this section, we explain the workflow of the ROOSTERIZE
toolchain, and then briefly describe our neural network model
for lemma name generation.
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Fig. 1: Low-level workflow of ROOSTERIZE.
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Fig. 2: Neural architecture of lemma name generation model
in ROOSTERIZE, exemplified for the name mg_eq_nerode.

A. Toolchain Workflow

Fig. 1 illustrates the low-level workflow of the ROOS-
TERIZE toolchain. (1) We use the SerAPI library [8] for
extracting data from Coq files, using three programs: sertok
for extracting tokens, sercomp for extracting the syntax
trees, and sername for extracting kernel trees. Syntax trees
are Coq’s internal representations of source code elements,
including lemmas, during the parsing phase. Kernel trees
are Coq’s internal representations of statements and func-
tions during proof checking, and contain rich information
relevant for lemma naming. (2) DataMiner orchestrates
these programs to obtain all lemmas in the given Coq files
and their names, lemma statements, and syntax and kernel
trees. (3) SubTok sub-tokenizes the inputs for the neural
network model. (4) MISeq2Seq is the multi-input neural
network model for lemma name generation (Section II-B). The
model is implemented in the popular deep learning framework
PyTorch [9], and is based on the OpenNMT library [10].

Users interact with ROOSTERIZE by using its command-
line interface or the VSCode extension. We use the Language
Server Protocol (LSP) [12] to connect the server (the core
of ROOSTERIZE including data extraction scripts and the
lemma name generation model) with the client (the VSCode
extension). This simplifies future integration with other editors
that also support LSP, e.g., Emacs.

B. Neural Network Model for Generating Lemma Names

We consider lemma name generation with an encoder-
decoder mindset, and use sequence-to-sequence (SEQ2SEQ)
neural architectures specifically designed for transduction
tasks [13]. Fig. 2 illustrates the architecture of our model [7].
The encoders are Recurrent Neural Networks (RNNs) that

learn a deep semantic representation of a given lemma
statement from its tokens, syntax tree, and kernel tree. The
model can be configured to use any combination of the three
encoders. The decoder is another RNN that generates the
descriptive lemma name based on the input deep semantic
representation. We equipped the decoder RNN with attention
mechanism [14] and copy mechanism [15] to improve the
generation accuracy.

All the inputs and the output are sequences of sub-tokens;
the sub-tokens of inputs are obtained using a sub-tokenizer,
and the sub-tokens of the output are concatenated to form the
generated lemma name. We implemented the sub-tokenizer
based on the conventions outlined by MathComp develop-
ers [6] (e.g., the lemma name extprod mulgA should be sub-
tokenized to extprod, , mul, g, and A). Because syntax and
kernel trees can be large, we implemented chopping heuristics
to remove the parts irrelevant for generating lemma names
before feeding them to the encoders. Our heuristics essentially:
(1) replace the fully qualified name sub-trees with only the
last component of the name; (2) remove the line number
information from sub-trees; (3) extract the singletons, i.e., non-
leaf nodes that have only one child.

III. TOOL INSTALLATION

ROOSTERIZE currently supports macOS and Linux-based
operating systems. The first installation step is to download
the ROOSTERIZE repository:

$ git clone \
https://github.com/EngineeringSoftware/roosterize

$ cd roosterize && git checkout v1.1.0+8.10.2

Required software and libraries. ROOSTERIZE depends on
two sets of software and libraries: (1) OCaml, Coq, and
SerAPI; (2) PyTorch and other Python libraries.

To install OCaml (4.07.1), Coq (8.10.2) and SerAPI (0.7.1),
we recommend using the OCaml-based package-management
system OPAM [16] version 2.0.7 or later:

$ opam switch create roosterize 4.07.1
$ opam switch roosterize && eval $(opam env)
$ opam update
$ opam pin add coq 8.10.2
$ opam pin add coq-serapi 8.10.0+0.7.1

To install PyTorch and other Python libraries, we recom-
mend using the package-management system Conda [17]. The
installation script may be different depending on the operating
system and whether to use GPU or not. For example, on Linux,
to use CPU only:

$ conda env create --name roosterize \
--file conda-envs/cpu.yml

$ conda activate roosterize

After installing these required software and libraries, users
can use ROOSTERIZE via its command-line interface.
VSCode extension. The ROOSTERIZE VSCode extension can
be installed easily from VSCode marketplace: launch “VS
Code Quick Open” (Ctrl+P), paste the following command:

ext install EngineeringSoftware.roosterize-vscode
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Fig. 3: Screenshot of using ROOSTERIZE from command line.

Fig. 4: Screenshot of using ROOSTERIZE from VSCode.

Then, users should configure the path to ROOSTERIZE ex-
ecutable file (./bin/roosterize) using the following steps:
open “Settings” (Ctrl+,), search for the entry “ROOSTERIZE:
Bin Path”, and fill in the path to ROOSTERIZE executable file.

IV. TOOL USAGE

In this section, we describe the way our tool can be invoked
from command line and from VSCode.

A. Command Line

After installation, users can launch ROOSTERIZE via the
executable file ./bin/roosterize (in short, roosterize).
We focus on the main usage of ROOSTERIZE—suggesting
lemma names for Coq projects. For other usages, e.g., training
models, users can refer to the help included in ROOSTERIZE:
$ roosterize --help

Users should first obtain a model, e.g., by downloading
a pre-trained model. The following command downloads the
model we pre-trained on our MathComp corpus [7]:
$ roosterize download_global_model

Applying ROOSTERIZE to a Coq project requires (1) a
CoqProject file in the project root directory in the format

used by the coq makefile tool [18], and (2) that the project
source code has been compiled. If a user specified the compila-
tion command in the .roosterizerc configuration file at the
root directory of the project, ROOSTERIZE will automatically

compile the project before suggesting lemma names. ROOST-
ERIZE can suggest lemma names for one Coq file at a time.
For example, running the following commands downloads the
Coq project FCSL PCM at Git revision eef4503, prepares a
.roosterizerc configuration file, and suggests lemma names
for the finmap.v file in the project:
$ git clone \

https://github.com/imdea-software/fcsl-pcm
$ git checkout eef4503
$ echo "compile_cmd: make -j8" > ./.roosterizerc
$ roosterize suggest_naming \

--file=$PWD/finmap/finmap.v

In the last command, ROOSTERIZE uses SerAPI to parse
finmap.v and extracts all lemmas, then uses the lemma names
suggestion model to generate top k (default k = 5) likely
lemma names for each lemma, and then compares the gener-
ated lemma names with the original lemma names, and finally
prints a report to suggest potential lemma names changes.
Fig. 3 shows the top part of the report generated for finmap.v
(full report available at: https://tinyurl.com/yy6l8fbq).

B. VSCode

Users should first open the Coq files they want to analyze.
The steps to obtain the lemma names suggestions for them are:
(1) open “Command Palettes” (Ctrl+Shift+P), and (2) choose
“Roosterize: Suggest Naming (for all .v files)”. After ROOS-
TERIZE produces the suggestions, the lemma names that do
not conform to the conventions are underlined, and users can
hover the mouse pointer over that underlined name to view
ROOSTERIZE’s suggestion in a tooltip. Users can also view all
suggestions in the “Problems” tab. Fig. 4 shows a screenshot
of this step.

V. EVALUATION

A. Quantitative

Coq projects under study. We selected four large Coq
projects from the MathComp family: math-comp, finmap,
fourcolor, and odd-order. The projects have a total of 164k
lines of code, 187 files, and 11,266 lemmas. More information
of these projects can be found in our corpus [19] (“Tier 1”
part). Following standard deep learning practice, we randomly
split the projects’ files into training, validation, and testing sets
which contain 80%, 10%, 10% of the files, which is 8,861,
1,085, 1,320 lemmas, respectively; the lemmas from a same
file are assigned to only one of the sets.
Results. We trained various configurations of our model. In
this paper, we focus on five configurations that use different in-
puts: Stmt+ChopKnlTree+ChopSynTree, Stmt+ChopKnlTree,
Stmt+ChopSynTree, ChopKnlTree+ChopSynTree, and only
Stmt (where Stmt = lemma statement, ChopSynTree =
chopped syntax tree, ChopKnlTree = chopped kernel tree).
We also compare our model with a retrieval-based baseline.

We evaluate each model by applying it on the testing set and
measure the average similarity between the generated names
and the expected names (as written by developers), using four
automatic metrics: BLEU [20], fragment accuracy [7], top-1
accuracy, and top-5 accuracy.
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TABLE I: Results of ROOSTERIZE Models.

Model BLEU Frag.Acc. Top1 Top5

Stmt+ChopKnlTree+ChopSynTree 45.4 22.2% 7.5% 16.5%
Stmt+ChopKnlTree 47.2 24.9% 9.6% 18.0%
Stmt+ChopSynTree 37.7 18.1% 6.1% 10.6%
ChopKnlTree+ChopSynTree 45.4 22.9% 7.6% 15.3%
Stmt 38.9 19.4% 6.9% 11.6%

Retrieval-based 28.3 10.0% 0.2% 0.3%

Table I shows the results. We observed that Stmt
+ChopKnlTree achieved the best performance and substan-
tially outperforms the retrieval-based baseline. This shows
the importance of using Coq’s internal structures. Lemma
statement and syntax tree do not work well together primarily
because the two representations contain mostly the same in-
formation. We performed extensive ablation studies to confirm
the effectiveness of the other parts of the model (Section 6.2
of our IJCAR’20 paper [7]), including the chopping heuristics
and the attention and copy mechanisms. We also performed
a generalization study which confirms that ROOSTERIZE can
perform well on a new project with little additional training
(Appendix D.3 of our IJCAR’20 paper [7]).

B. Qualitative

We carried out a qualitative case study using ROOSTERIZE
by applying it to the FCSL PCM Coq project, which comprises
690 lemmas. 36 suggestions (5%) exactly matched the exist-
ing lemma names. We then asked the project maintainer to
comment on the remaining suggestions. The maintainer found
that 20% of the suggested names he inspected were of good
quality, out of which more than half were of high quality.
Considering that the analysis was of top-1 suggestions, we
find these results encouraging.

VI. LIMITATIONS AND FUTURE WORK

Due to limitations in the protocol that VSCode uses to
communicate with Coq, our VSCode extension cannot obtain
name suggestions for a lemma in real time as it is being edited,
i.e., by monitoring changes to the Coq source file and proof
state. However, our toolchain can support this mode of use
once protocol limitations are lifted.

The quality of lemma name suggestions is highly dependent
on the quality of the pre-trained neural networks, and building
a model requires careful curation of Coq training data. While
we have constructed such a high-quality dataset based on the
MathComp family of projects, additional datasets must be
curated to suggest names that follow conventions other than
those for MathComp.

VII. CONCLUSION

We presented ROOSTERIZE, a toolchain for suggesting
lemma names in Coq verification projects. Nearly all related
work addresses fundamentally different name generation tasks
in conventional languages such as Java [1]. An exception is
Aspinall and Kaliszyk [5], who learn naming from a corpus for
the HOL Light proof assistant; however, their technique only

suggests names that appear in the training data. ROOSTERIZE
uses novel neural network models pre-trained on existing Coq
code to generate lemma names. Our quantitative evaluation
showed that ROOSTERIZE outperforms several strong base-
lines, and our qualitative evaluation demonstrated the quality
of generated lemma names. We believe ROOSTERIZE can be
especially useful to proof engineers in large Coq projects
to ensure that lemma names follow prevailing conventions.
Through our integration of ROOSTERIZE with the VSCode
editor, naming suggestions can be continually provided as Coq
code is added and revised.
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