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Abstract

Object-oriented programming languages enable a hierarchi-
cal class structure, which provides rich contextual informa-
tion to guide code comprehension and synthesis. In this work,
we propose the novel task of generating comments for over-
riding methods to facilitate code comprehension. To address
this task, we formulate a deep learning framework which
(1) exploits context from the comments of overridden meth-
ods and class names; (2) learns to generate comments in over-
riding methods that are more specific than those in the over-
ridden methods; and (3) ensures that the generated comments
are compatible with comments of overridden methods.

1 Introduction
The object-oriented paradigm enables developers to build hi-
erarchical class structures. Under this paradigm, an overrid-
ing method m(args) is a method provided in a subclass K⊥

with the same signature as a method m(args) (referred to
as the overridden method) in class K>, which is the super-
class of K⊥. The overriding method K⊥.m(args) is said to
override the overridden method K>.m(args). For instance,
in Figure 1, the InfoAccessSyntax class inherits mem-
bers (methods and fields) from its superclass Object. Here,
InfoAccessSyntax overrides Object’s implementation of
the getEncoded() method. It adds the functionality to ini-
tialize the encoding, i.e., when the encoding is null, the
method will compute and use the ASN1 encoding.

The context provided by the class hierarchy can be use-
ful for a wide variety of problems including code genera-
tion, code retrieval, and comment generation. For instance,
the comment of the overridden method (Figure 1a) gives a
general template which can be adapted to produce an accom-
panying comment for the overriding method (Figure 1b). As
a step towards better understanding how to leverage class
hierarchical context in deep learning models, we focus on
generating comments for overriding methods in subclasses
based on the comments of overridden methods.

Developers rely on natural language comments to under-
stand important aspects of the source code they accompany,
such as implementation, functionality, and usage. However,
writing comments can be laborious and time-consuming,
which is not ideal for fast-development cycles that are be-
coming increasingly prevalent (Panthaplackel et al. 2020;
Liu et al. 2020; Hu et al. 2019; Tan et al. 2012). In practice,

public class Object {

protected byte[] encoding;

/** Returns encoded form of the object */

public byte[] getEncoded() {

return encoding;}}

(a) The getEncoded() method in the superclass, Object.

public class InfoAccessSyntax /* extends Object */ {

/** Returns ASN.1 encoded form of this

infoAccessSyntax */

@Override public byte[] getEncoded() {

if (encoding == null) {

encoding = ASN1.encode(this);}

return encoding;}}

(b) The getEncoded() method in the subclass, InfoAccessSyntax.

Figure 1: The InfoAccessSyntax class extends the super-
class Object and overrides the getEncoded() method.

developers frequently just copy the comment from overrid-
den method to overriding method, which results in a generic
and non-descriptive comment for the overriding method. In
this work, we aim to automatically generate comment sug-
gestions that would help streamline the process of writing
descriptive comments for overriding methods.

We design HIERARCHY-AWARE SEQ2SEQ, which lever-
ages information from the class hierarchy. Namely, we in-
corporate a learned representation of the comment corre-
sponding to the overridden method in the superclass, as this
provides a general template that can be adapted. We also
encode the class name, which often describes unique role
and sometimes appears in the comment, as seen in Figure 1
(InfoAccessSyntax in the comment).

We further encode the notion of comment specificity (Ko,
Durrett, and Li 2019; Zhang et al. 2018) to capture our ob-
servation that the comments for overriding methods usually
contain specific words for describing their differences from
the overridden methods, such as “ASN.1” in Figure 1. To
ensure that the resulting lower-frequency words still pertain
to the input, we also modify the architecture to encourage
latent representations that are more similar to those of the
input code and comments.

Additionally, we capture the intuition that the overriding



comments should be compatible to and should not contradict
the comment corresponding to the overridden method. We
introduce a compatibility classifier which allows us to give
preference to generated comments that are compatible with
their overridden counterparts during reranking.

Our main contributions are as follows: (1) we formu-
late the novel task of generating comments for overriding
methods; (2) to address this, we design models that incor-
porate the class hierarchy in terms of context, specificity,
and compatibility; (3) for training and evaluation, we build a
large corpus of overriding-overridden method-comment tu-
ples with their associated class hierarchy information.

2 Task
When a developer overrides a method, we aim to automati-
cally generate a natural language comment which accurately
reflects the method’s behavior, capturing important aspects
of the class hierarchy, as well as unique code that extends
the implementation in the superclass. Concretely, in Fig-
ure 1, suppose a developer writes the method body of M⊥

(getEncoded()) in class K⊥ (InfoAccessSyntax) which
overrides the parent method, M>, in the superclass, K>

(Object). Our task is to generate the comment for M⊥, C⊥

(“Returns ASN.1 encoded form of this infoAccessSyntax”),
using context provided by the overriding method body, M⊥,
as well as the inputs from the class hierarchy. This includes
the name of K⊥, Kname⊥; the name of K>, Kname>;
the overridden method body, M>; and C> (i.e., M>’s com-
ment, “Returns encoded form of the object”).

We primarily consider generating the first sentence of
the method-level comment, similar to prior work (Hu et al.
2019). The first sentence serves as a summary comment of
the high-level functionality of the method. We also consider
the more challenging task: generating the full description
comment, i.e., the entire comment block without tags (e.g.,
@param). This includes both the high-level summary, as
well as detailed descriptions of the method’s functionality.

3 HIERARCHY-AWARE SEQ2SEQ
Our approach, HIERARCHY-AWARE SEQ2SEQ, leverages
context from the class hierarchy to generate C⊥. Shown
in Figure 2, this is a SEQ2SEQ (Sutskever, Vinyals, and
Le 2014) model that decodes C⊥ using learned represen-
tations of three inputs: M⊥, Kname⊥, and C> (§3.1). We
also incorporate token-level auxiliary features into each of
these encoders to further capture patterns pertaining to the
class hierarchy, as well as properties of code and comments.
During decoding, we discourage generating generic predic-
tions by additionally injecting tailored representations that
capture specificity (§3.2). Finally, we perform reranking to
ensure that the prediction for C⊥ is compatible with C>

(§3.3).

3.1 Encoders and Decoder
Method Encoder. We use a BiGRU (Cho et al. 2014) to en-
code M⊥. Similar to prior work (Panthaplackel et al. 2020),
we concatenate auxiliary features to the embedding vector
corresponding to each input token before feeding it into the

ENCODERS

M⊥ · · ·

public byte }
Kname⊥ · · ·

info access syntax

C> · · ·

returns encoded object

〈BOS〉

returns asn . . . 〈EOS〉

C⊥

DECODER

specificity level
embedding

reranking w/
compatibility

classifier

Figure 2: HIERARCHY-AWARE SEQ2SEQ architecture.

encoder. These include various features that capture whether
a token is a Java keyword or operator; appears only in M>,
only in M⊥, or both; and has lexical overlap in class names
(Kname⊥ and Kname>). These features are intended to
help guide the model in correlating the method implementa-
tion with various components of the class hierarchy.
Class Name Encoder. Because M⊥ is specific to sub-
class (K⊥), the class name (Kname⊥) can often shed light
on M⊥’s functionality. For instance, in Figure 1, knowing
Kname⊥ (InfoAccessSyntax) is helpful to generate the
correct comment. Using a BiGRU, we learn a representation
of Kname⊥, as a sequence of subtokens. We similarly ex-
tract subtoken-level features which indicate whether a par-
ticular subtoken appears only in Kname⊥ or also appears
in Kname>. We also include features identifying lexical
overlap between subtokens in Kname⊥ and those in M⊥.
Superclass Comment Encoder. We find the hierarchical re-
lationship between M⊥ and M> to often hold between their
accompanying comments. To provide context from the com-
ment in the superclass, we introduce an encoder for learning
a representation of C>. Like the other encoders, we con-
catenate features to the embedding vector corresponding to
each token in the input sequence. We include features cap-
turing lexical overlap with Kname⊥ and M> as we expect
similar patterns to emerge in C⊥. We also incorporate fea-
tures that have been used to characterize comments in prior
work (Panthaplackel et al. 2020): whether the token appears
more than once, is a stop word, and its part-of-speech tag.
Decoder. We concatenate the final hidden states of each of
the encoders to initialize the GRU decoder. We leverage at-
tention (Luong, Pham, and Manning 2015) over the hidden
states of all of these encoders. We additionally allow the
decoder to copy tokens related to the implementation and
class hierarchy from context provided by the inputs through
a pointer network (Vinyals, Fortunato, and Jaitly 2015) over
the hidden states of all three encoders.

3.2 Conditioning on Specificity
To encourage the decoder to predict a sequence that is
specific and concretely reflects the functionality of M⊥,
we learn specificity embeddings (Ko, Durrett, and Li
2019). Namely, we discretize normalized inverse word fre-
quency (Zhang et al. 2018) into 5 levels and associate an
embedding with each. During training, each comment is as-
signed to its corresponding level, thus the embeddings are
trained jointly with the model. At test time, following the
intuition that overriding comments should be more specific,
we feed in the embedding for the level that maximizes speci-
ficity at each time step.



Training Validation Testing

Projects 414 16 41

First sentence 9,389 702 463
Full description 10,980 708 519

Table 1: Number of projects, first sentence, and full descrip-
tion examples used for the training/validation/test sets.

Because specificity alone would encourage the model to
generate words of lower frequency, we try to encourage the
model to prefer tokens that are semantically similar to the
input. Specifically, we calculate coherence, which measures
the similarity between the C⊥ and C> sentence embed-
dings. Sentence embeddings are computed as the weighted
average of token embeddings, where the weights correspond
to inverse document frequency. Similar to specificity, these
coherence representations are also discretized into 5 levels,
and their embeddings are jointly trained with the model. At
test time, we select the maximum level for coherence.

3.3 Compatibility Reranking
We additionally ensure that the model prediction C⊥ is com-
patible with C>; namely, C⊥ should in principle be factu-
ally consistent with C> and in many cases entail C>, e.g.,
Figure 1. To estimate such compatibility, we rely on the as-
sumption that pairs of (C>, C⊥) are inherently compatible,
and rerank candidate predictions using a pretrained compat-
ibility classifier. This is a binary classifier trained to classify
whether a subclass comment is compatible with a given su-
perclass comment. We extract positive examples in the form
(C>, C⊥) for every example in our training set. To form
negative examples, we randomly select a subclass comment
that does not belong to a subclass which inherits from K>,
for every C> in the training set. The classifier learns the
representations of the two comments using GRU encoders
and convolution layers. These two representations are con-
catenated and fed through a multi-layer perceptron network
and a softmax layer to predict the compatibility label. The
classifiers achieved 75.5% accuracy and 0.764 F1 score for
first sentence comments; and achieved 71.5% accuracy and
0.742 F1 score for full description comments.

To rerank, we classify whether each beam search candi-
date is compatible with C> and discard all incompatible
ones, effectively moving up all compatible candidates. Our
final model prediction is the highest ranked candidate. If all
candidates are incompatible, we produce the candidate that
was originally ranked highest.

4 Dataset
We build a corpus by mining open-source Java projects for
examples in the form: ((M⊥, C⊥, K⊥), (M>, C>, K>)).
From the Javadoc API documentation accompanying a given
method, we derive comments from the main description,
which precedes the tags (Oracle 2020b). As mentioned in
Section 2, we consider both the first sentence of the main
description part and the full description.

As done in prior work (Movshovitz-Attias and Cohen
2013; Panthaplackel et al. 2020), we partition the dataset in

such a way that there is no overlap between the projects used
for training, validation, and testing. By limiting the number
of closely-related examples across partitions, this setting al-
lows us to better evaluate a model’s ability to generalize.
We filter out comments with non-English words, and remove
those with < 3 words, as we find that these often fail to ade-
quately describe functionality. We also discard trivial exam-
ples in which C⊥=C> as they lead to unwanted behavior in
which the model learns to just copy C>. We tokenize source
code and comments by splitting by space and punctuation
and then split tokens of the form camelCase and snake case
to subtokens in order to reduce vocabulary size. Data statis-
tics are given in Table 1. The average lengths of C⊥ and C>

are 16.7 and 16.0 respectively for first sentence and 32.9 and
37.7 for full description comments.

5 Experiments
In this section, we describe several baselines, implementa-
tion details, and evaluation metrics.

5.1 Baselines
COPY. This is a rule-based approach which merely copies
C>as the prediction for C⊥. This is in line with Javadoc tool
which automatically copies C> from M> (Oracle 2020a).
CLASS NAME SUBSTITUTION. Based on our observations,
there are many cases in which the developer obtains C⊥

by simply copying C> and replacing all occurrences of the
parent class name with that of the child class. We simulate
this procedure using rule-based string replacement: C⊥ =
C>.Replace(K>, K⊥). Note that if the parent class name
does not appear in C>, then C⊥=C>.
SEQ2SEQ. We consider an approach that does not have
access to class-related information. Namely, we use a
SEQ2SEQ model with one BiGRU encoder for M⊥, one
GRU decoder for C⊥, and attention (Luong, Pham, and
Manning 2015) and copy (Vinyals, Fortunato, and Jaitly
2015) mechanisms.
DEEPCOM-HYBRID (Hu et al. 2019). This approach uses
two long short-term memory (LSTM) encoders to learn rep-
resentations of the code and the flattened AST sequences.
These are then used by an LSTM decoder to generate a se-
quence of comment tokens.
EDIT MODEL. We find that developers often produce C⊥

by editing C>; however, these are not always as simple as
class name substitution and require more complex edits. To
address this, we include a model which learns to edit C> in
order to produce C⊥. We adapt our recent comment edit-
ing framework that was originally proposed for updating
comments that become outdated upon code changes to the
corresponding methods (Panthaplackel et al. 2020). We first
encode the existing comment using a BiGRU and the code
edits with another BiGRU. We then use a GRU decoder to
generate a sequence of comment edits which are applied to
the existing comment. This leads to an updated comment
that is consistent with the new version of the method. In our
setting, we treat C> as the “existing comment” and encode
the code edits between M> and M⊥. We apply the gener-
ated comment edit sequence to C> in order to produce C⊥,
which is expected to be consistent with M⊥.



Model First sentence Full description
BLEU-4 METEOR ROUGE-L BLEU-4 METEOR ROUGE-L

COPY 24.228 19.845 43.352 20.623 18.757 40.846
CLASS NAME SUBSTITUTION 26.764 22.496 45.632 24.215 21.442 42.014

SEQ2SEQ 15.389 13.122 29.453 9.003 9.136 24.379
DEEPCOM-HYBRID 26.073 22.256 45.037 21.812 20.779 40.257

EDIT MODEL 31.755 26.926 46.939 23.734 22.571 44.359
HIERARCHY-AWARE SEQ2SEQ 35.899 31.131 53.548 27.719 26.908 49.352

Table 2: Comparison of our approach with baselines. Differences between all pairs are statistically significant.

5.2 Evaluation Metrics
Following prior work in comment generation and code sum-
marization (Iyer et al. 2016; Hu et al. 2019; Liang and
Zhu 2018; LeClair, Jiang, and McMillan 2019), we report
metrics used to evaluate language generation tasks: BLEU-
4 (Papineni et al. 2002), METEOR (Banerjee and Lavie
2005), and ROUGE-L (Lin 2004).

6 Results
We report results averaged across three random restarts.
We use bootstrap tests (Berg-Kirkpatrick, Burkett, and
Klein 2012) for significance testing under confidence level
95%. In Table 2, we present results for baselines and our
HIERARCHY-AWARE SEQ2SEQ model. We first note that
the COPY baseline underperforms the majority of other
models (with the exception of SEQ2SEQ) across metrics for
both datasets, demonstrating that generating the comment
for an overriding method extends beyond simply repeat-
ing the overridden method’s comment, contradicting prior
claims (Hu et al. 2019). Both SEQ2SEQ and DEEPCOM-
HYBRID, which do not have access to the context from the
class hierarchy, underperform the other three approaches
(besides COPY) that do have access to this information, in-
cluding the rule-based CLASS NAME SUBSTITUTION base-
line. This underlines the importance of context from the
class hierarchy for generating overriding method comments.
EDIT MODEL and HIERARCHY-AWARE SEQ2SEQ, the two
models which learn to exploit the class hierarchical con-
text, achieve higher performance than CLASS NAME SUB-
STITUTION. We find HIERARCHY-AWARE SEQ2SEQ to
yield better performance than EDIT MODEL. Recall that
SEQ2SEQ’s high-level neural composition closely matches
that of HIERARCHY-AWARE SEQ2SEQ, only without any
information pertaining to the class hierarchy. Hence, utiliz-
ing class hierarchy can achieve more than 80% improvement
across metrics. While the results are analogous, performance
across all metrics are consistently higher for first sentences
than full descriptions, indicating, not surprisingly, that the
latter is a more challenging task.

7 Related Work
Liu et al. (2019) address the task of comment generation and
consider incorporating external context from the method call
dependency graph by encoding the method names as a se-
quence of tokens. However, they do not consider the com-
ments accompanying these methods. Haque et al. (2020)
generate comments by encoding the method signatures of

all other methods in the same file, again, without the accom-
panying comments. Rather than using the context of the call
graph or other methods within the same file, we use the class
hierarchy, and we also extract a comment (in the superclass)
from this context, which we found to be one of the most criti-
cal components of our approach. Zhai et al. (2020) propose a
rule-based approach for generating new comments by prop-
agating comments from various code elements such as meth-
ods and classes. Such a system can generate a comment for
the overriding method by simply propagating the comment
of the overridden method (resembling our COPY baseline)
or doing simple string replacements of class names (resem-
bling our CLASS NAME SUBSTITUTION baseline). We in-
stead learn how to leverage C> in our HIERARCHY-AWARE
SEQ2SEQ model, which outperforms both the COPY and
CLASS NAME SUBSTITUTION baselines. Allamanis et al.
(2015) study the task of method name generation. They build
a log-bilinear neural language model which includes long-
dependency contexts such as fields, sibling methods and
super class to suggest method names. Their model learns
the embeddings of names and output semantically similar
names rather than learning to leverage hierarchy information
to generate sequences as in our work.

8 Conclusion

In this work, we leverage the hierarchical class structure in
object-oriented programming languages for automatic com-
ment generation, aimed to guide code comprehension. We
describe a new approach that utilizes this hierarchical struc-
ture, as well as specificity and compatibility, and show that
it can be applied for automatically commenting overriding
methods. Integrating this approach with the growing body
of work in machine learning and natural language process-
ing for software development will lead to the emergence of
more intelligent, effective software engineering tools. Partic-
ularly, it would be interesting to adapt our hierarchy-aware
approach to the inverse problem of program synthesis from
natural language descriptions of overriding methods.
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