
CoditT5: Pretraining for Source Code and
Natural Language Editing

Jiyang Zhang
The University of Texas at Austin

Austin, TX, USA
jiyang.zhang@utexas.edu

Sheena Panthaplackel
The University of Texas at Austin

Austin, TX, USA
spantha@cs.utexas.edu

Pengyu Nie
The University of Texas at Austin

Austin, TX, USA
pynie@utexas.edu

Junyi Jessy Li
The University of Texas at Austin

Austin, TX, USA
jessy@austin.utexas.edu

Milos Gligoric
The University of Texas at Austin

Austin, TX, USA
gligoric@utexas.edu

ABSTRACT

Pretrained language models have been shown to be effective in
many software-related generation tasks; however, they are not well-
suited for editing tasks as they are not designed to reason about
edits. To address this, we propose a novel pretraining objective
which explicitly models edits and use it to build CoditT5, a large
language model for software-related editing tasks that is pretrained
on large amounts of source code and natural language comments.
We fine-tune it on various downstream editing tasks, including
comment updating, bug fixing, and automated code review. By
outperforming standard generation-based models, we demonstrate
the generalizability of our approach and its suitability for editing
tasks. We also show how a standard generation model and our edit-
basedmodel can complement one another through simple reranking
strategies, with which we achieve state-of-the-art performance for
the three downstream editing tasks.

CCS CONCEPTS

• Computing methodologies → Machine learning; • Software

and its engineering→ Software evolution.

KEYWORDS

Pretrained language models, editing, bug fixing, comment updating,
automated code review

ACM Reference Format:

Jiyang Zhang, Sheena Panthaplackel, Pengyu Nie, Junyi Jessy Li, and Milos
Gligoric. 2022. CoditT5: Pretraining for Source Code and Natural Language
Editing. In 37th IEEE/ACM International Conference on Automated Software

Engineering (ASE ’22), October 10–14, 2022, Rochester, MI, USA. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3551349.3556955

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASE ’22, October 10–14, 2022, Rochester, MI, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9475-8/22/10. . . $15.00
https://doi.org/10.1145/3551349.3556955

1 INTRODUCTION

Large language models pretrained on massive amounts of data
have led to remarkable progress in recent years, with models like
BART [26], GPT [7, 43], and T5 [44] yielding huge improvements
for a vast number of text generation tasks. Inspired by this, a new re-
search initiative has emerged around building large models that are
pretrained on source code and technical text to address software-
related tasks. This includes models like PLBART [1], CodeGPT-
2 [32], and CodeT5 [55]. While these models demonstrate impres-
sive performance on generation tasks like code summarization,
code generation, and code translation, it is unclear if they are well-
suited for the editing nature of many software-related tasks. For
instance, bug fixing [49] entails editing source code to resolve bugs,
automated code review [51] requires editing source code to in-
corporate feedback from review comments, and comment updat-
ing [16, 29, 31, 40] pertains to updating outdated natural language
comments to reflect code changes.

In principle, such editing tasks can be framed as standard gener-
ation tasks in which an input sequence (e.g., buggy code snippet) is
completely re-written to form the output sequence (e.g., fixed code
snippet). In this way, existing pretrained conditional generation
models can be fine-tuned to autoregressively generate a sequence
from scratch. However, this can be problematic in practice [40].
When applying large generation models like PLBART and CodeT5
to these tasks, we find that they can generate output which merely
copies the input without performing any edits (up to 34.25%) or
even deviates substantially from the input, introducing irrelevant
changes. We provide an example of automated code review in Fig-
ure 1, where a reviewer prescribes edits that need to be made to a
given code snippet: “Generally better to qualify than making static
import”. Using the code snippet and this comment, PLBART gener-
ates an output sequence which copies the original code, without
applying any edits. While the output is valid and a likely sequence
according to PLBART’s language model, it makes no edits based
on the reviewer’s comments.

We attribute these weaknesses to the fact that such models rely
on pretraining objectives designed for generating code (or software-
related natural language) in sequence by exploiting patterns with
respect to preceding tokens. Therefore, a model has to learn to
implicitly perform edits by generating tokens one by one in accor-
dance with the underlying probability that it has learned for which

https://doi.org/10.1145/3551349.3556955
https://doi.org/10.1145/3551349.3556955

ASE ’22, October 10–14, 2022, Rochester, MI, USA Jiyang Zhang, Sheena Panthaplackel, Pengyu Nie, Junyi Jessy Li, and Milos Gligoric

tokens belong alongside one another, rather than being aware of
where information should be retained or modified.

Intuitively, edit-based generation requires a different approach
that more frequently refers back to the input sequence, and can
often be characterized by localized operations (e.g., insertion, dele-
tion, substitution). To guide a model in discerning edit locations
in the input sequence and reason about the necessary edit opera-
tions, we design a novel pretraining objective that explicitly models
edits. Our approach is inspired by content planning in natural
language generation where a skeleton of key elements are first
generated and used to guide more accurate and precise generation
of full text [14, 33, 42, 45]. Specifically, during decoding, a model
first generates an edit plan that explicitly details the edit opera-
tions. Then, it proceeds to autoregressively generate the target
edited sequence, during which it attends to the edit plan. Through
this, we effectively encourage the model to learn to better reason
about edits and how they should be applied to form the target se-
quence. Using this objective, we develop CoditT5, a large language
model for software-related edit tasks that is pretrained on more
than 5.9 million open-source programming language code snippets
and 1.6 million natural language comments from the CodeSearch-
Net [22] training data.

For evaluation, we fine-tune CoditT5 on three downstream
tasks: comment updating, bug fixing, and automated code review.
For each of these tasks, we show that CoditT5 outperforms state-
of-the-art models as well as large pretrained standard generation-
based models. Through this, we demonstrate that our model and the
proposed edit-based pretraining objective generalize across tasks
and are better suited for editing tasks in the software domain.

Furthermore, in our evaluation, we find that our edit-based
model, CoditT5, can be further improved if combined with a stan-
dard generation-based model. We find that the edit-based and stan-
dard generation-based models are complementary to one another.
Namely, while the edit-based model provides better explicit model-
ing of concrete edits, a standard generation-based model provides
certain advantages in terms of the contextual coherence of the gen-
erated target sequence. To exploit this complementary nature of
these models, we combine the two models through reranking strate-
gies which require no additional training. Our results show that
the combined approaches outperform the two models individually
by up to 19.35%.

We summarize our main contributions as follows:
• We formulate a novel pretraining objective that entails first gen-
erating a plan consisting of edit operations to be applied to the
input sequence followed by the resulting target sequence.

• Webuild and release CoditT5, a large languagemodel for software-
related editing tasks that is pretrained on large amounts of source
code and natural language with the new pretraining objective.

• Upon task-specific fine-tuning, we show that CoditT5 achieves
improved performance over existing models for three distinct
downstream editing tasks (comment updating, bug fixing and
automated code review), demonstrating its effectiveness and
generalizability.

• We show that by combining our edit-based CoditT5 model with
a standard generation model through simple reranking strategies,

Before Editing
default List<Pattern> getExcludedResponseHeaderPatterns() {

return emptyList();

}

Reviewer’s Comment
Generally better to qualify than making static import
PLBART
default List<Pattern> getExcludedResponseHeaderPatterns() {

return emptyList();

}

Figure 1: An example in automated code review task where

PLBART merely copies the input which does not match re-

viewer’s comment.

we can beat each of the individual models and achieve new state-
of-the-art in all three tasks, demonstrating the complementary
nature of edit-based and standard generation models.

Our code and data is publicly available at
https://github.com/EngineeringSoftware/CoditT5.

2 BACKGROUND

We first give a high-level overview of the building blocks that are
necessary to understand our approach.

2.1 Generation with Transformer-Based Models

Conditional Sequence Generation. Conditional sequence genera-
tion entails generating an output sequence given an input sequence.
Many tasks are framed in this manner, including machine transla-
tion (e.g., translating a sentence from French to English) [2], text
summarization (e.g., generating a brief summary for a given news
article) [46], and code generation (e.g., generating a code snippet
for a given natural language specification) [58].

Encoder-Decoder Framework. In recent years, conditional sequence
generation tasks are being addressed with encoder-decoder models.
An encoder-decoder model consists of two neural components: an
encoder and a decoder. The input sequence is fed into the encoder,
which produces learned vector representations of the tokens in that
sequence. These learned vector representations are then passed into
the decoder, which generates the output sequence one token at a
time. Specifically, the decoder predicts the next token by reasoning
over the input sequence and the tokens generated at previous time
steps.

Transformers. Transformers [52] are powerful neural models
that are commonly adopted as the encoder and decoder in the
encoder-decoder framework. These models rely on an attention

mechanism to learn representations for tokens by relating them to
other tokens in the sequence. Namely, a transformer-based encoder
will learn representations for each token in the input sequence by
“attending” to other input tokens. For the decoder, when generating
a token at timestep 𝑡 , it will “attend” to the representations of the
output tokens generated from timestep 1 to 𝑡 − 1 as well as the
representations of tokens from the input sequence. Transformer
models can become very large with huge numbers of attention
heads, encoder and decoder layers.

https://github.com/EngineeringSoftware/CoditT5

CoditT5: Pretraining for Source Code and Natural Language Editing ASE ’22, October 10–14, 2022, Rochester, MI, USA

Encoder

@param [MASK] List of objects

@param users List of user objects

Decoder

<ReplaceOld> [MASK] <ReplaceNew> users <ReplaceEnd> <Insert> user <InsertEnd>

<s>

@param users List of user objects

1

2

noising function

Figure 2: The corrupted text is encoded with a bidirectional encoder, and the decoder is pretrained to generate sequences of edit

actions to recover the original text followed by a separation token (<s>), and finally the target sequence

2.2 Large Pretrained Language Models

Large pretrained language models generally refer to the class of
large transformer-based models that are trained on large amounts
of unlabeled data (collected from webpages, news articles, etc.) with
unsupervised training objectives. This includes a vast number of
models like GPT [7, 43], BART [26], and T5 [44].

Denoising Autoencoder Pretraining. BART and T5 models are
pretrained using denoising autoencoding unsupervised training
objectives. Namely, a noising function is first applied to a given
input sequence inp to form inp

′. Common noising functions include
Token Masking: tokens in the input sequence are randomly masked;
Token Deletion: random tokens are deleted from the input sequence;
Token Infilling: a span of tokens are sampled and replaced with a
mask token; Sentence Permutation: sentences in the document are
shuffled in a random order. Then, inp′ is fed into a model’s encoder,
and the encoder’s learned representation is passed into the decoder,
which generates an output sequence, out, that is expected to resem-
ble the original input sequence (inp). In other words, the model is
trained to “denoise” inp′, using a training objective that minimizes
the error between out and the original input, inp. Through this, the
model learns to extract meaning from the input sequence and also
generate fluent and coherent output. Therefore, by pretraining on
massive amounts of data, the model develops an understanding of
how things in the world relate to one another as a strong language
modeling capability.

Fine-tuning for Downstream Tasks. Since large pretrained lan-
guage models are trained using unsupervised training objectives
on huge amounts of data, they cannot generally be directly applied
to downstream tasks (e.g., translation, summarization). Fine-tuning
is a common technique to transfer the knowledge learned during
pretraining to target downstream tasks. Specifically, the pretrained
model is further trained for the downstream task on some amount
of supervised data.

2.3 Large Pretrained Language Models for

Software Engineering

Inspired by the success of large pretrained models in Natural Lan-
guage Processing (NLP), a number of machine learning models

pretrained on source code and technical text have been proposed
for solving various software-related problems.

For instance, inspired by BART, Ahmad et al. [1] developed
PLBART, which is a large pretrained language model that can be
fine-tuned for a number of code understanding (e.g., code sum-
marization) and generation (e.g., code translation) tasks. Similarly,
inspired by T5, Wang et al. [55] built a larger model CodeT5, which
is pretrained on six programming languages together with their nat-
ural language comments collected from open-source repositories.
Specially, it is pretrained to incorporate information from identifiers
in the code. CodeT5 has shown promising results in code-related
generation tasks such as code summarization, code generation and
code-related understanding tasks such as clone detection and vul-
nerability identification. However, aforementioned models are for
generation and they are only implicitly aware of edit operations if
at all.

3 CODITT5

CoditT5 is built upon the encoder-decoder framework with the
same architecture as CodeT5. As shown in Figure 2, the model is
pretrained with our proposed objective: generating the edit-based
output sequence given the corrupted input sequence. In this section,
we first explain our proposed pretraining objective (Section 3.1).
We then discuss how we build CoditT5 by pretraining on this
objective, including the data used for pretraining (Section 3.2), and
additional details of the pretraining setup (Section 3.3).

3.1 Pretraining Objective

We formulate a new pretraining objective that is designed to en-
courage a model to explicitly reason about edits. At a high-level,
this objective falls under the realm of denoising autoencoding in
which an input sequence is first corrupted with noising functions
and the model is trained to denoise the corrupted sequence by gener-
ating an output sequence that matches the original input sequence.
While existing models like PLBART and CodeT5 pretrained using
this setup perform very well on various generation tasks (e.g., code
summarization/generation), we find that they do not generalize
well when fine-tuned on editing tasks. Namely, they are susceptible

ASE ’22, October 10–14, 2022, Rochester, MI, USA Jiyang Zhang, Sheena Panthaplackel, Pengyu Nie, Junyi Jessy Li, and Milos Gligoric

to learning to copy the original input sequence instead of actually
performing edits, up to 34.25% of the time (Table 3).

We propose the following edit-based output sequence representa-
tion (shown in Figure 2): [Edit Plan] <s> [Target Sequence], where
the model is trained to generate an edit plan (1) consisting of ex-
plicit edit operations that must be applied to the corrupted sequence
to reconstruct the original input sequence, followed by a separation
token (<s>), and finally the target sequence (2) that matches the
original input sequence. This is inspired by the concept of content
planning, originating from natural language generation [45]. In
content planning, a high-level plan is first outlined, specifying the
discourse structure of the content to be generated, and then lexical
realization is performed to generate the text.

3.1.1 Edit Plan. The edit plan entails the specific edit operations
that are needed to recover the original input sequence. For example,
in Figure 2, the input sequence: “@param users List of user objects” is
corrupted by masking “users” and removing token “user”: “@param
[MASK] List of objects”. With this, a model must first reason about
the fact that [MASK] in the corrupted input sequence needs to be
replaced with “users” and “user” should be inserted between “of”
and “objects” when producing the target sequence. To construct the
sequence of edit operations, we closely follow the format proposed
by Panthaplackel et al. [40]:

<Operation> [span of tokens] <OperationEnd>

Here, <Operation> is either Insert or Delete. We also include
the Replace operation, with a slightly different structure (since
both the old content to be replaced as well as the new content to
replace it with must be specified):

<ReplaceOld> [span of old tokens]
<ReplaceNew> [span of new tokens] <ReplaceEnd>

To determine the specific edit operations for a given example, we use
difflib1 to compute the optimal set of edits needed to transform the
corrupted input sequence into the original input sequence. Multiple
edit operations are placed in the same order as the span of tokens
under editing appears in the input sequence (for example, the edit
plan in Figure 2 consists of two edit operations).

3.1.2 Target Sequence. One might ask whether we could simply
apply the sequence of edit operations in the generated edit plan to
the corrupted input sequence directly to recover the original input
sequence heuristically. For example, if we align “<ReplaceOld>
[MASK] <ReplaceNew> user <ReplaceOld>” with a corrupted
input sequence “@param [MASK] List of user objects”, it is very clear
that all we need to do is replace [MASK]with “user”and no additional
generation is needed. However, there are two main issues with this.
First, not all operations will be specified in a deterministic manner.
For example, if the edit plan is “<Insert> user <InsertEnd>”, it
is not clear where the new token “user” should be added to. Second,
the generated edit plan does not correspond to contiguous output
tokens since it consists of fragmented information (edit operations
and token spans) rather than a complete sentence. As a result, neural
language models may fail to generate correct edit plans due to their
lack of language properties such as fluency and coherency [40].

1https://docs.python.org/3/library/difflib.html

Table 1: Statistics collected from downstream tasks for cre-

ating pretraining dataset. Avg. No. of Tokens represents the

average number of tokens in each edited span; Avg. No. of

Spans represents the average number of edited spans in each

input sequence.

PL NL

Probability of Delete edit 0.49 0.07
Probability of Insert edit 0.21 0.11
Probability of Replace edit 0.30 0.82
Avg. No. of Tokens 6.50 3.00
Avg. No. of Spans 1.90 1.40

Therefore, we need an additional step for learning to apply edits
while simultaneously maintaining fluency and coherency. For this
reason, once the edit plan is outlined as a sequence of edit opera-
tions, the target sequence (which is expected to recover the original
input sequence) must also be generated: “@param users List of user
objects”. The decoder generates tokens in a left-to-right manner,
meaning that when generating a token at a given timestep, it is
aware of all tokens generated in previous timesteps. So, when gen-
erating the target sequence, the decoder can exploit the sequence
of edits that was generated in the edit plan earlier. In this way, the
model can reason the edits and the generation simultaneously.

3.1.3 Noising Functions. To support learning across a diverse set
of edit actions during pretraining, we consider multiple noising
functions for corrupting the input sequence: 1) randomly masking
spans with the special [MASK] token which requires the model
to replace it with the correct spans, 2) inserting [MASK] token at
random positions which requires the model to identify the useless
spans and delete them and 3) deleting spans of tokens in the input
sequence which requires the model pinpoint the position and add
back the missing pieces.

3.2 Pretraining Data

3.2.1 Data Collection. Following prior work, we pretrain CoditT5
on large amounts of source code and natural language comments
from the CodeSearchNet [22] dataset which consists of functions
of six programming languages (Java, Python, Ruby, Php, Go and
JavaScript) together with the natural language comments. Code-
SearchNet is widely used to pretrain large language models, such
as CodeT5 [55] and UniXcoder [18]. We use the training set of
the processed CodeSearchNet dataset provided by Guo et al. [18]
which contains 6.1 million programming languages code snippets
(functions/methods) and 1.9 million natural language comments.

3.2.2 Data Preparation. To enable CoditT5 to capture common
edit patterns, we want the pretraining dataset to reflect the common
activities conducted by software developers. Specifically, in the
pretraining dataset, the probability of each edit operations applied
to the spans in the input sequence and the length (number of tokens)
of the corrupted span should be consistent with the distributions
and sizes of real-world edits in downstream editing tasks.

https://docs.python.org/3/library/difflib.html

CoditT5: Pretraining for Source Code and Natural Language Editing ASE ’22, October 10–14, 2022, Rochester, MI, USA

Table 2: Statistics of the datasets used to pretrain CoditT5.

First row: number of programming language and natural

language; second row: average number of tokens in corrupted

input sequences; third row: average number of tokens in the

output sequence (edit plan + target sequence).

PL NL

Examples 5,956,069 1,675,277
Avg. C-Tokens 102.01 15.42
Avg. O-Tokens 120.23 26.57

To this end, we collect statistics for source code edits from the
training sets of the bug fixing and automated code review down-
stream tasks and statistics for natural language edits from the com-
ment updating’s training set. As shown in Table 1, we collect the
probability of each edit operation (insert, delete and replace) to be
performed on a span; the average number of tokens in each span
that is edited; and the average number of spans that are edited in
each input sequence. For each example in the pretraining dataset,
we then uniformly sample the spans and the edit operations that
should be applied in accordance with the statistics collected from
the downstream datasets.

Similar to CodeT5 [55], we use the RoBERTa [30] tokenizer to
tokenize all sequences (input, edit plan, target). More concretely,
the tokenizer splits words in the sequence into tokens (subwords)
that are used by the model. Moreover, we remove input sequences
that are shorter than 3 tokens and longer than 512 tokens after
tokenizationwhich leave us with 5.9 million programming language
code snippets and 1.6 million natural language comments. This is
because too short inputs are usually incomplete and CodeT5 is
designed to only handle sequence of length 512. Table 2 presents
the statistics of the pretraining dataset.

3.3 Pretraining Setup

Model Architecture. CoditT5 consists of 12 encoder and decoder
layers, 12 attention heads, and a hidden dimension size of 768.
The total number of parameters is 223M. Model parameters are
initialized from the CodeT5-base model, and we further pretrain it
on the CodeSearchNet pretraining dataset (Section 3.2) using our
proposed objective (Section 3.1).

Training. We implement CoditT5 using PyTorch 1.9.0 and use 16
NVidia 1080-TI GPUs, Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
for pretraining for 4 days. For fine-tuning, we run the experiments
on 4 NVidia 1080-TI GPUs, Intel(R) Xeon(R) CPU E5-2620 v4 @
2.10GHz with the same hyper-parameters as CodeT5.

4 EXPERIMENTAL DESIGN

To assess CoditT5 and our proposed pretraining objective, we fine-
tune the model on three software-related downstream tasks. Note
that during fine-tuning, the model is still trained to generate the
edit-based output sequence. However, at test time, we discard the
edit plan and take the generated target sequence as the final model
output. Namely, we use the generated sequence after the separation
token <s> as model’s prediction.

Table 3: Percentage that model just copy the input.

Models PLBART CodeT5 CoditT5

𝐵2𝐹𝑠 6.48 7.97 0.55
𝐵2𝐹𝑚 10.92 10.08 0.78
Comment Updating (clean) 21.33 16.67 2.67
Comment Updating (full) 34.25 25.47 5.73
Automated Code Review 22.24 29.28 1.28

Table 4: Statistics for the datasets used for downstream tasks.

Task Train Valid Test

Comment Updating
clean 16,494 1,878 150
full 16,494 1,878 1,971

Bug Fixing
𝐵2𝐹𝑠 46,628 5,828 5,831
𝐵2𝐹𝑚 52,324 6,542 6,538

Automated Code Review 13,753 1,719 1,718

4.1 Downstream Tasks

Comment Updating. The task of comment updating entails auto-
matically updating a natural language comment to reflect changes
in the corresponding body of code [40]. For instance, in Example 2
in Figure 5, the old @return comment needs to be revised based
on the changes in the method. Instead of directly returning the
yaw Euler angle measured in radians, the unit of the return value
is changed to degrees in the new version, with the method call
Math.toDegrees().

Bug Fixing. Given a buggy code snippet, the task of bug fixing
entails generating a fixed code snippet, which no longer contains
the bug [48].

Automated Code Review. Given a code snippet under review and
a brief natural language sentence prescribing code edits, automated
code review requires automatically generating the revised code
snippet, which captures the recommended changes [51]. For exam-
ple, in Figure 1, emptyList() should be changed to Collections.-
emptyList() because the reviewer suggests not using static import.

4.2 Data for Downstream Tasks

We use datasets that have been established and previously used
for each of the three tasks. The statistics of the datasets is shown
in Table 4. Unlike pretraining where the goal is to recover the
corrupted input sequences, during fine-tuning, CoditT5 is trained
to generate an edit plan for completing the downstream editing
task, that can be applied to a part of the input (e.g., old comment),
followed by the target sequence (e.g., new comment).

Comment Updating. For this task, Panthaplackel et al. [39] has
released a corpus of Java method changes paired with changes
in the corresponding comments (spanning @return, @param, and
summary comments). This dataset also comes with a clean subset of
the test set which was manually curated. The input sequence used
for fine-tuning is formed by concatenating the old comment and

ASE ’22, October 10–14, 2022, Rochester, MI, USA Jiyang Zhang, Sheena Panthaplackel, Pengyu Nie, Junyi Jessy Li, and Milos Gligoric

code edits. The code edits follow the representation described in
Section 3.1.1, except that an additional Keep operation is included
to denote spans that are left unchanged.

Bug Fixing. We consider the Java BugFixPairs-Small (𝐵2𝐹𝑠) and
BugFixPairs-Medium (𝐵2𝐹𝑚) datasets, originally released by Tufano
et al. [48]. Chakraborty and Ray [8] supplemented these datasets
with additional context, namely natural language guidance from
the developer, and the method where the patch should be applied.
𝐵2𝐹𝑠 contains shorter methods with a maximum token length 50,
and 𝐵2𝐹𝑚 contains longer methods with up to 100 tokens in length.
The input sequence used for fine-tuning is formed with the buggy
code, natural language guidance, and code context.

Automated Code Review. We use the automated code review
dataset released by Tufano et al. [51], which consists of Java meth-
ods (before and after the review) paired with pull request comments,
derived from pull request reviews on GitHub and Gerrit. To reduce
the vocabulary size, they further abstracted Java methods by re-
placing identifiers and literals with special tokens. In this work,
we use the data with concrete tokens. The input sequence used for
fine-tuning is formed using the code snippet before review and the
pull request comment from reviewers.

4.3 Baselines

4.3.1 Generation Baselines. We consider two large standard gen-
eration language models trained with denoising autoencoding pre-
training objectives which are not edit-based: PLBART andCodeT5.
Both of these are fine-tuned to directly generate the target output
sequence. Furthermore, to better assess the value of actually pre-
training using the proposed objective instead of simply fine-tuning
a model to generate an edit-based output sequence, we also con-
sider fine-tuning CodeT5 to generate the specialized edit-based
output sequence representation. We refer to this as CodeT5 (w/

edit-based output). We fine-tune each of these models using the
same input context as CoditT5.

4.3.2 Task-Specific Baselines. We additionally compare against the
state-of-the-art models for each of the downstream tasks.

For comment updating, the state-of-the-art model is Panthap-
lackel et al. [40], which entails Recurrent Neural Network (RNN)
based encoders for representing the old comment and code ed-
its, and an RNN-based decoder for decoding edits. These edits are
parsed at test time and reranked based on similarity to the old
comment and likelihood based on a comment generation model.

For bug fixing, the state-of-the-art model is essentially PLBART
fine-tuned on the 𝐵2𝐹𝑠 and 𝐵2𝐹𝑚 to generate the fixed code [8].

For automated code review, no baselines are available for the
specific version of the dataset we used with concrete identifiers and
literals (rather than the one with abstracted identifiers and literals).
Therefore, we rely on those described in Section 4.3.1 and establish
new baselines for this version of the dataset.

4.4 Evaluation Metrics

For comment updating, we report performance on the same met-
rics that have been used previously to benchmark models for this
task [40]. This includes: xMatch (whether the model prediction
exactly matches the ground truth), common metrics that measure

Before Editing:
public HashConfigurationBuilder capacityFactor (float capacityFactor) {

if (numSegments < 0)

throw new IllegalArgumentException ("capacityFactor must be positive");

this.capacityFactor = capacityFactor ;

return this;

}

Reviewer’s Comment:
typo: capacityFactor instead of numSegments
CodeT5:
public HashConfigurationBuilder capacityFactor(float capacityFactor) {

this.capacityFactor = capacityFactor;

return this;

}

CoditT5:
public HashConfigurationBuilder capacityFactor (float capacityFactor) {

if (capacityFactor < 0)

throw new IllegalArgumentException ("capacityFactor must be positive") ;

this.capacityFactor = capacityFactor;

return this;

}

Figure 3: Comparing the output of CodeT5 and CoditT5 for a

automated code review example. CodeT5 generates incorrect

output that drastically deviates from the input code while

CoditT5 generates the correct output, performing only rele-

vant edits.

lexical overlap for evaluating text generation (BLEU-4 2 [41] and
METEOR [3]), and common metrics for measuring text editing
(GLEU [35] and SARI [56]). For bug fixing, we use xMatch, as done
in prior work [8]. For automated code review, we report perfor-
mance on xMatch and BLEU-4, which have been used previously
to benchmark models for this task [51].

5 EVALUATION

We organize our evaluation around three main research questions:
RQ1: How does our edit-based model, CoditT5, compare to gener-
ation and task-specific baselines for edit-related tasks?
RQ2: Does our proposed pretraining objective help a model in
better reasoning about and performing edits?
RQ3: Can a standard generation model complement CoditT5 by
integrating the two models?

5.1 Comparing CoditT5 to Baselines

We present results in Tables 5-8. Note that the results shown in the
last two rows in each of the tables are explained later in Section 5.3.
We perform statistical significance testing using bootstrap tests [4]
with confidence level 95%.

RQ1: How does our edit-based model, CoditT5, compare to
generation and task-specific baselines for edit-related tasks?

We find that CoditT5 (and most of the pretrained models) drasti-
cally outperforms Panthaplackel et al. [40] (a non-pretrained model)
across metrics for comment updating. This demonstrates the value
of large language model pretrained on vast amounts of data using
unsupervised pretraining objectives.

2We measure 1∼4-gram overlap and compute the average.

CoditT5: Pretraining for Source Code and Natural Language Editing ASE ’22, October 10–14, 2022, Rochester, MI, USA

Table 5: Results for comment updating on the clean test set. The results with the same prefixes (e.g., 𝛽) are NOT statistically

significantly different.

Models xMatch BLEU-4 METEOR GLEU SARI

Panthaplackel et al. [40] 33.33 56.55 52.26 51.88 56.23
PLBART 35.33 62.04𝛾 56.79 54.75 52.83
CodeT5 38.00 65.20𝛼 59.63 58.84𝛽 58.80
CodeT5 (w/ edit-based output) 40.00 62.97𝛾 59.08 58.72𝛽 61.11𝜖𝜂

CoditT5 43.33𝜒 64.56 60.75 59.53 61.41𝛿𝜖

CoditT5 (reranked with CodeT5) 45.33 66.80 63.33 61.60 61.48𝛿𝜂

CodeT5 (reranked with CoditT5) 44.00𝜒 65.58𝛼 62.44 60.48 62.57

Table 6: Results for comment updating on the full test set. The results with the same prefixes (e.g., 𝛽) are NOT statistically

significantly different.

Models xMatch BLEU-4 METEOR GLEU SARI

Panthaplackel et al. [40] 24.81 48.89 44.58 45.69 47.93
PLBART 22.98 55.42ℏ𝜄 49.12 47.83 43.40
CodeT5 28.56 58.37𝛼 53.13 51.90 49.23
CodeT5 (w/ edit-based output) 29.83𝛿𝛾 54.83 50.71 50.67𝜖 52.01𝜂

CoditT5 29.38𝛿 55.30𝛽𝜄 51.14𝜒 50.62𝜖 51.39

CoditT5 (reranked with CodeT5) 30.14
𝛾

58.72
𝛼

53.60 52.81 50.47
CodeT5 (reranked with CoditT5) 27.80 55.54𝛽ℏ 51.44𝜒 50.02 52.24

𝜂

Table 7: Results on bug fixing dataset. The results with the

same prefixes (e.g., 𝛽) are NOT statistically significantly dif-

ferent.

Models

xMatch

𝐵2𝐹𝑠 𝐵2𝐹𝑚

PLBART 31.09 24.18
CodeT5 34.81 26.66
CodeT5 (w/ edit-based output) 36.37 29.28𝛼

CoditT5 37.52 29.96𝛼

CoditT5 (reranked with CodeT5) 40.22 32.06
𝛽

CodeT5 (reranked with CoditT5) 39.56 32.24𝛽

Next, across all three tasks, CoditT5 achieves higher perfor-
mance than the two standard generation-based pretrained models,
significantly outperforming PLBART and CodeT5 for most of the
metrics, highlighting the benefit of explicitly modeling edits for
these editing tasks. In fact, CodeT5 (w/ edit-based output), which ex-
plicitly models edits only during fine-tuning rather than pretraining,
outperforms CodeT5 on edit-based metrics (xMatch, SARI). This
further underlines the utility of the edit-based output sequence
representation that we developed.

Nonetheless, across most metrics, CoditT5 still outperforms
CodeT5 (w/ edit-based output), which is not pretrained using the
pretraining objective but uses the same edit-based output sequence

Table 8: Results for automated code review. The results with

the same prefixes (e.g., 𝛽) are NOT statistically significantly

different.

Models xMatch BLEU-4

PLBART 26.78 79.38
CodeT5 34.98 83.20
CodeT5 (w/ edit-based output) 36.38𝛼 80.06𝛽

CoditT5 37.19𝛼 80.50𝛽

CoditT5 (reranked with CodeT5) 40.98 84.12
𝜒

CodeT5 (reranked with CoditT5) 43.42 83.92𝜒

representation during fine-tuning. This demonstrates the impor-
tance of actually pretraining with this representation rather than
relying on fine-tuning alone.

5.2 Evaluating our Pretraining Objective

While we observe that CoditT5 tends to achieve slightly lower
performance than CodeT5 on generation-based metrics (BLEU-4,
METEOR) for two of the tasks, we find that it significantly out-
performs other metrics which capture whether the correct edits
are generated, such as xMatch and GLEU and SARI for comment
updating. This suggests that CoditT5 is indeed better at editing. By
inspecting the outputs of the twomodels, we find that CodeT5 tends
to make drastic and unnecessary edits while CoditT5 appears to be
better at making more fine-grained edits. For example, in Figure 3,

ASE ’22, October 10–14, 2022, Rochester, MI, USA Jiyang Zhang, Sheena Panthaplackel, Pengyu Nie, Junyi Jessy Li, and Milos Gligoric

Example 1
Before Editing:
protected boolean isProcessed(ChronicleLogOffsetTracker tracker, long offset) {

long last = tracker.readLastCommittedOffset();

return (last > 0) && (last >= offset);

}

Reviewer’s Comment:
No need for parentheses.
Edit plan
⟨Delete⟩ (⟨Delete_End⟩ ⟨Delete⟩) ⟨Delete_End⟩
Target sequence:
protected boolean isProcessed(ChronicleLogOffsetTracker tracker, long offset) {

long last = tracker.readLastCommittedOffset();

return last > 0 && last >= offset;

}

Example 2
Before Editing:
public Builder setDataSize(Estimate dataSize) {

this.dataSize = requireNonNull(dataSize, "dataSize can not be null");

return this;

}

Reviewer’s Comment
you don’t validate in other builders method (and you don’t have to)
Edit plan
⟨Delete⟩ equireNonNull(dataSize, "dataSize can not be null"); ⟨Delete_End⟩
Target sequence:
public Builder setDataSize(Estimate dataSize) {

this.dataSize = dataSize;

return this;

}

Figure 4: Examples for automated code review for which

CoditT5 generated ambiguous or erroneous edit plans but

still managed to generate the correct target sequences.

Table 9: Percentages of target sequence generated byCoditT5

being consistent with the edit plan.

Datasets Is Consistent (%)

𝐵2𝐹𝑠 92%
𝐵2𝐹𝑚 88%
Comment Updating (clean) 87%
Comment Updating (full) 85%
Automated Code Review 74%

CodeT5 generates output that completely discards critical state-
ments in the code, whereas CoditT5 is able to correctly localize the
part of the input code that needs to be changed and make editions
properly. We attribute this to the fact that CodeT5 is not designed to
reason about edits while CoditT5 is. We further evaluate the influ-
ence of our proposed pretraining objective on this editing capability.

RQ2: Does our proposed pretraining objective help a model in
better reasoning about and performing edits?

First, we compare how often CoditT5 naively copies the input
content without actually performing any edits, to two pretrained

models which use generation-based pretraining objectives. We re-
port the percentages in Table 3. By copying substantially less often
than the PLBART and CodeT5, we find that CoditT5 learns to more
frequently perform edits with our proposed edit-based pretraining
objective which indicates it is suitable for editing tasks.

CoditT5’s decoder is encouraged to generate a target sequence
that follows the outlined edit plan; however, we do not constrain
the decoder in any way to do this.3 Nonetheless, we find that in
the majority of cases (74%-92%), the target sequence is consistent
with the edit plan, as shown in Table 9. More concretely, the target
sequence generally resembles what would be produced if the edit
operations in the edit plan were applied to the original content.
This suggests that the pretraining objective does in fact guide the
model in reasoning about edits.

For cases in which there is ambiguity or errors in the edit plan,
we find that CoditT5 still often manages to generate the correct tar-
get sequence, by disregarding unreasonable edits or disambiguating
ambiguous edits. We show two examples in automated code review
in Figure 4 with the Java method before review, the generated edit
plan, and the generated target sequence. In Example 1, the edit plan
is ambiguous since there are multiple instances of “(” and it does
not specify which one(s) should be deleted. However, the gener-
ated target sequence is correct, as the model was able to correctly
reason about the most appropriate edit locations. In Example 2,
the edit plan is imprecise and blindly following this plan would
result in syntactically incorrect code, but the model still managed
to perform the correct edits and produced valid output by ignoring
the fallacious edit. Overall, we find that both components of the
edit-based output sequence representation used in the pretraining
objective (edit plan and target sequence) are critical.

5.3 Integrating CoditT5 and CodeT5

CoditT5 is designed to complement a generation model by pro-
viding more explicit guidance for edits. However, a model that is
trained to generate edits can struggle with coherence and fluency
since it is not actually trained to generate consecutive text [40]. By
including the generation of the target sequence in the pretraining
objective, we do mitigate this to some extent, even when there are
ambiguities or errors in the edit plan. However, there appears to be
a trade-off between performing the correct edits while maintaining
performance with respect to generation metrics. More specifically,
in Tables 5-8, CoditT5 outperforms CodeT5 with respect to xMatch
(and SARI for comment updating), but underperforms with respect
to BLEU-4. To exploit the slight superiority of CodeT5 in this re-
spect, we consider incorporating CodeT5 into our approach.

RQ3: Can a pure generation model complement CoditT5 by
integrating the two models?

5.3.1 Experimental Setup. We combine the two models using sim-
ple likelihood-based reranking strategies at test time (with no addi-
tional training). Namely, at test time, CoditT5 and CodeT5 each
generate 20 candidates using beam search. While we have been
only looking at the top one prediction for all previous experiments,
we will consider all 20 candidates for reranking. We compute a

3We do not want potential errors in the edit plan to propagate to the target sequence.

CoditT5: Pretraining for Source Code and Natural Language Editing ASE ’22, October 10–14, 2022, Rochester, MI, USA

Example 1
Buggy Code
public List<TagVFilter> getFilters() {

if ((filters) == null) {

filters = new ArrayList<TagVFilter>();

}

return filters;

}

CoditT5:
public List<TagVFilter> getFilters() {

if ((filters) == null) {

filters = new ArrayList<TagVFilter>();

}

return new ArrayList(filters);

}

CoditT5 (reranked with CodeT5):
public List<TagVFilter> getFilters() {

if ((filters) == null) {

filters = new ArrayList<TagVFilter>();

}

return new ArrayList<TagVFilter>(filters);

}

Example 2
/** @return double The yaw Euler angle. */

public double getRotY() {

return mOrientation.getRotationY();

}

/** @return ? */

public double getRotY() {

return Math.toDegrees(mOrientation.getRotationY());

}

CodeT5: @return double The yaw Euler angle.
Reranked CodeT5: @return double The yaw Euler angle in degrees.

Figure 5: Examples from comment updating and bug fixing

which demonstrate the impact of reranking.

reranking score for each of these to essentially re-score them. The
candidate which has the highest reranking score will be the final
model prediction. We investigate two different reranking strategies:

CoditT5 (reranked with CodeT5): To exploit the language-specific
norms learned by CodeT5, we rerank the candidates generated by
CoditT5 based on the probability score CodeT5’s language model
assigns to the corresponding target sequences (namely after <s>).

We compute the length-normalized conditional log probability
score of CodeT5 generating the target sequence, conditioned on
the same input:

𝑠𝑐𝑜𝑟𝑒 = 𝑙𝑜𝑔(𝑃 (𝑇 |𝐼)
1
𝑁)

where 𝑇 is the target sequence, 𝐼 is the model’s input, 𝑁 is the
length of 𝑇 . We also length-normalize the log probability of the
candidate, as scored by CoditT5, and then add the two probability
scores together to obtain the reranking score.

CodeT5 (reranked with CoditT5): Conversely, we also rerank the
output of CodeT5 based on the likelihood of CoditT5, such that
the generated sequence can be assessed in terms of explicit edits.
We first parse the output of CodeT5 into the edit-based output
sequence representation (as described in Section 3.1.1) and then
concatenate it with the model’s output using <s>. Then we compute

the likelihood of CoditT5 generating this sequence, conditioned on
the same input. We then add the length-normalized log probability
score of CoditT5 with the score originally assigned by CodeT5
(after length-normalizing and applying log).

5.3.2 Results. We provide results in the bottom two rows of Ta-
bles 5-8. By reranking the output of CoditT5 using CodeT5, we are
able to achieve improved performance on all the metrics including
BLEU-4 across tasks (and the other generation-based metric, ME-
TEOR, for comment updating). To illustrate this, consider Example 1
in Figure 5, with a buggy code snippet and outputs corresponding
to CoditT5 before and after reranking. We observe that CoditT5
correctly localizes the bug and correctly identifies that the edit
entails initializing an ArrayList in the return statement. However,
the generated target sequence is a defective code snippet which
does not properly initialize an ArrayList with the correct type
TagVFilter. By leveraging CodeT5’s likelihood score, we are able
to effectively filter out the defective prediction and obtain the cor-
rect output.

By reranking the output of CodeT5 using CoditT5, we see signif-
icant improvements with respect to CodeT5 on metrics that more
directly evaluate whether the correct edits were performed, in-
cluding xMatch as well as GLEU and SARI for comment updating.
This suggests that the edit-based and generation-based models are
indeed complementary to one another. As a case study, consider
Example 2 in Figure 5. CodeT5 produces a sequence which simply
copies the old comment, without capturing the code changes. While
this may be a likely comment sequence, according to CodeT5’s lan-
guage model, copying without applying any edits is not a likely
edit plan to be generated for CoditT5.

By combining CoditT5 and CodeT5 through reranking, we can
further boost performance substantially across most metrics for
all three tasks, outperforming the two models individually, and
achieving new state-of-the-art.

6 LIMITATIONS

Other Programming Languages. The downstream editing tasks
we studied in this work are using Java. Since CoditT5’s pretraining
is on the dataset consisting of six programming languages, we
expect it to also performwell on editing tasks in other programming
languages, but we leave empirically verifying this as future work.
Data Contamination. CoditT5 is pretrained on data collected
from open-source projects. It is possible that similar examples in
pretraining data exist in downstream tasks’ test set. While prior
work [7] has shown that data contamination may have little im-
pact on the performance of pretrained models in natural language
processing tasks, future work can investigate this problem for pre-
trained models for software engineering.

7 RELATEDWORK

In this section, we consider the most closely related work on learn-
ing edits, large pretrained models for code, pretrained models for
code edits and combining complementary models.
Learning Edits. Prior work has studied learning edits in both
natural language and programming language. We followed the
approach of explicitly representing edits as sequences with edit

ASE ’22, October 10–14, 2022, Rochester, MI, USA Jiyang Zhang, Sheena Panthaplackel, Pengyu Nie, Junyi Jessy Li, and Milos Gligoric

actions. Our edit representation is inspired by Panthaplackel et al.
[39, 40], who studied learning comment edits based on code edits.
Brody et al. [6], Chen et al. [10], Tarlow et al. [47], Yao et al. [57]
represented code as ASTs (abstract syntax trees) and the code edits
as edit actions over the AST nodes rather than tokens. We do not
focus on editing structured data (AST) as it can not be generalized
to natural language, and it can not be easily combined with large
pretrained models which are primarily based on sequence of tokens.

Alternatively, edits can be encoded into vector representations
(or embeddings). Guu et al. [20] studied learning edit embeddings
for natural language generation in a prototype-then-edit style. Yin
et al. [59] studied learning code edits as embeddings and then
applying them to natural language insertion and code bug fixing.
Hashimoto et al. [21] developed a retrieve-and-edit framework for
text-to-code generation, where the edits are learned as parameters
of a seq2seq model. Similarly, Li et al. [27] proposed a retrieve-
and-edit framework for code summarization task where the model
first learns an edit vector and then generate the revised summary
conditioned on it. Although learning edits as embeddings can be
effective for individual tasks, it is not suitable to be used in the
pretraining fine-tuning paradigm, because there is a large domain
gap between the edit embeddings learned on different tasks. More
over, edit embeddings are less explainable compared to the explicit
edit representations we use.

Another line of work that carries out the idea of learning edits is
copying mechanism, including copying individual tokens [17, 53]
and spans [38, 60], which helps the model to “keep” unchanged
tokens and focus on generating the edited part. Iv et al. [23] built a
T5-based model to update the existing articles based on the given
new evidence. The model is trained to output a copy token instead
of the copied sentence and a special reference token before the
updated text which identifies the evidence to support the update.
Ding et al. [12] trained the model to emit pointers that indicate
the positions for editions and new tokens to be inserted at the
same time. Similarly, Chen et al. [10], Tarlow et al. [47] augmented
the transformer-based decoder with pointers to the input graph
representation of the code which specify the input locations to edit.
Although related, it is orthogonal to our work of learning edits with
pretraining.
Large Pretrained Models for Code. Motivated by the success
of large pretrained models for many NLP tasks, domain-specific
models that are pretrained on source code and technical text have
emerged, including CodeBERT [15], GraphCodeBERT [19], CodeGPT-
2 [32], CodeT5 [55], PLBART [1], PyMT5 [11], SynCoBERT [54],
SPT-Code [37], Codex [9] and UniXcoder [18]. CodeBERT, Graph-
CodeBERT and SynCoBERT consists of a pretrained encoder which
is designed to learn code representation. CodeGPT-2 and Codex
consists of a GPT-styple [43] language model pretrained on public
available code to support code completion and code generation
tasks. CodeT5, PLBART, PyMT5 and SPT-Code are based on the
encoder-decoder architecture for both code understanding and gen-
eration.

Similar to our approach, GraphCodeBERT, CodeT5, SynCoBERT,
SPT-Code and UniXcoder also designed specialized pretraining
objectives driven by their targeted tasks. As we showed in this work,
the combination of an edit-based language model and a standard

language model can achieve better performance than using the
standard language model alone.
Pretrained Models for Code Edits. Prior work already explored
applying pretrained models, despite not well-suited, on editing
tasks. Chakraborty and Ray [8] used PLBART for code bug fixing,
which we compared to in our work. Similarly, Drain et al. [13] fur-
ther pretrained BART model on 67K Java repositories mined from
GitHub and fine-tuned specifically on the bug fixing dataset [49].
Mastropaolo et al. [34], Wang et al. [55] both pretrained T5 model
on CodeSerchNet and used it for bug fixing, which we included
as a baseline (CodeT5). Codex [9] showed promising performance
on editing tasks by specifying the existing code as a prompt and
providing an edit instruction to the model. Tufano et al. [50] and
Li et al. [28] both proposed a transformer-based encoder-decoder
model pretrained on large code reviewer specific data for code re-
view related tasks including code change quality estimation, review
comment generation and code refinement. While they demonstrate
impressive performance on various tasks, none of them are fun-
damentally well-suited for edit tasks. In this work, we develop
CoditT5 with a novel pretraining objective for generating edit
sequences, which can complement the generation model such as
CodeT5 for edit tasks.
Combining ComplementaryModels. We used reranking [24, 36]
to combine complementary models in this work. Ensembling [25]
is another approach for combining complementary models for gen-
eration tasks, but requires additional training. Co-training [5] and
tri-training [61] approaches, although shown to be very effective in
combining complementary models, are designed for classification
models rather than generation models.

8 CONCLUSION

In this paper, we present a novel edit-driven pretraining objec-
tive and use it to develop CoditT5, a pretrained language model
for software-related editing tasks. CoditT5 is pretrained on large
amounts of source code and natural language comments to perform
edits, and we evaluate this model by fine-tuning it on three distinct
downstream tasks: comment updating, bug fixing and automated
code review. By outperforming task-specific baselines and pure
generation baselines across tasks, we demonstrate the suitability of
CoditT5 (and our pretraining objective) for editing tasks and its
generalizability. We additionally find that a pure generation-based
model and CoditT5 can complement one another through simple
reranking strategies, which outperform each of the models indi-
vidually and also achieve new state-of-the-art performance for the
three downstream editing tasks that we consider.

ACKNOWLEDGMENTS

We thank Nader Al Awar, Yu Liu, Raymond J. Mooney, Aditya
Thimmaiah, Zhiqiang Zang, and the anonymous reviewers for their
comments and feedback. We acknowledge the Texas Advanced
Computing Center (TACC) at The University of Texas at Austin
for providing HPC resources that have contributed to the research
results reported within this paper. This work is partially supported
by the US National Science Foundation under Grant Nos. CCF-
1652517, CCF-2107291, IIS-2107524 and IIS-2145479.

CoditT5: Pretraining for Source Code and Natural Language Editing ASE ’22, October 10–14, 2022, Rochester, MI, USA

REFERENCES

[1] Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. 2021.
Unified Pre-training for Program Understanding and Generation. In Conference

of the North American Chapter of the Association for Computational Linguistics:

Human Language Technologies. 2655–2668.
[2] Dzmitry Bahdanau, Kyung Hyun Cho, and Yoshua Bengio. 2015. Neural machine

translation by jointly learning to align and translate. In International Conference

on Learning Representations.
[3] Satanjeev Banerjee and Alon Lavie. 2005. METEOR: An automatic metric for MT

evaluation with improved correlation with human judgments. In ACL Workshop

on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or

Summarization. 65–72.
[4] Taylor Berg-Kirkpatrick, David Burkett, and Dan Klein. 2012. An Empirical

Investigation of Statistical Significance in NLP. In Joint Conference on Empirical

Methods in Natural Language Processing and Computational Natural Language

Learning. 995–1005.
[5] Avrim Blum and Tom Mitchell. 1998. Combining labeled and unlabeled data with

co-training. In Computational Learning Theory. 92–100.
[6] Shaked Brody, Uri Alon, and Eran Yahav. 2020. A structural model for contextual

code changes. International Conference on Object-Oriented Programming, Systems,

Languages, and Applications 4 (2020), 1–28.
[7] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,

Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. In Advances in Neural

Information Processing Systems. 1877–1901.
[8] Saikat Chakraborty and Baishakhi Ray. 2021. OnMulti-Modal Learning of Editing

Source Code. In Automated Software Engineering. 443–455.
[9] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira

Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman,
et al. 2021. Evaluating large language models trained on code. arXiv preprint
arXiv:2107.03374 (2021).

[10] Zimin Chen, Vincent J Hellendoorn, Pascal Lamblin, Petros Maniatis, Pierre-
AntoineManzagol, Daniel Tarlow, and SubhodeepMoitra. 2021. PLUR: A unifying,
graph-based view of program learning, understanding, and repair. In Advances

in Neural Information Processing Systems. 23089–23101.
[11] Colin Clement, Dawn Drain, Jonathan Timcheck, Alexey Svyatkovskiy, and

Neel Sundaresan. 2020. PyMT5: multi-mode translation of natural language
and Python code with transformers. In Empirical Methods in Natural Language

Processing. 9052–9065.
[12] Yangruibo Ding, Baishakhi Ray, Premkumar Devanbu, and Vincent J Hellendoorn.

2020. Patching as Translation: the Data and the Metaphor. In Automated Software

Engineering. 275–286.
[13] Dawn Drain, Chen Wu, Alexey Svyatkovskiy, and Neel Sundaresan. 2021. Gen-

erating bug-fixes using pretrained transformers. In International Symposium on

Machine Programming. 1–8.
[14] Angela Fan, Mike Lewis, and Yann Dauphin. 2019. Strategies for Structuring Story

Generation. In Annual Meeting of the Association for Computational Linguistics.
2650–2660.

[15] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. 2020. CodeBERT: A Pre-
Trained Model for Programming and Natural Languages. In Empirical Methods in

Natural Language Processing: Findings. 1536–1547.
[16] Zhipeng Gao, Xin Xia, David Lo, John Grundy, and Thomas Zimmermann. 2021.

Automating the removal of obsolete TODO comments. In Joint European Software

Engineering Conference and Symposium on the Foundations of Software Engineering.
218–229.

[17] Jiatao Gu, Zhengdong Lu, Hang Li, and Victor OK Li. 2016. Incorporating Copy-
ing Mechanism in Sequence-to-Sequence Learning. In Annual Meeting of the

Association for Computational Linguistics. 1631–1640.
[18] Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming Zhou, and Jian Yin. 2022.

UniXcoder: Unified Cross-Modal Pre-training for Code Representation. In Annual

Meeting of the Association for Computational Linguistics. 7212–7225.
[19] Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, LIU Shujie, Long

Zhou, Nan Duan, Alexey Svyatkovskiy, Shengyu Fu, et al. 2020. GraphCodeBERT:
Pre-training Code Representations with Data Flow. In International Conference

on Learning Representations.
[20] Kelvin Guu, Tatsunori B Hashimoto, Yonatan Oren, and Percy Liang. 2018. Gen-

erating sentences by editing prototypes. Transactions of the Association for

Computational Linguistics 6 (2018), 437–450.
[21] Tatsunori B Hashimoto, Kelvin Guu, Yonatan Oren, and Percy S Liang. 2018. A

retrieve-and-edit framework for predicting structured outputs. In Advances in

Neural Information Processing Systems.
[22] Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc

Brockschmidt. 2019. Codesearchnet challenge: Evaluating the state of semantic
code search. arXiv preprint arXiv:1909.09436 (2019).

[23] Robert Iv, Alexandre Passos, Sameer Singh, and Ming-Wei Chang. 2022. FRUIT:
Faithfully Reflecting Updated Information in Text. In Conference of the North

American Chapter of the Association for Computational Linguistics: Human Lan-

guage Technologies. 3670–3686.
[24] Reno Kriz, João Sedoc, Marianna Apidianaki, Carolina Zheng, Gaurav Kumar,

Eleni Miltsakaki, and Chris Callison-Burch. 2019. Complexity-Weighted Loss and
Diverse Reranking for Sentence Simplification. In Conference of the North Ameri-

can Chapter of the Association for Computational Linguistics: Human Language

Technologies. 3137–3147.
[25] Alexander LeClair, Aakash Bansal, and Collin McMillan. 2021. Ensemble Models

for Neural Source Code Summarization of Subroutines. In International Conference
on Software Maintenance and Evolution. 286–297.

[26] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman
Mohamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. 2020. BART:
Denoising Sequence-to-Sequence Pre-training for Natural Language Genera-
tion, Translation, and Comprehension. In Annual Meeting of the Association for

Computational Linguistics. 7871–7880.
[27] Jia Li, Yongmin Li, Ge Li, Xing Hu, Xin Xia, and Zhi Jin. 2021. Editsum: A

retrieve-and-edit framework for source code summarization. In Automated Soft-

ware Engineering. 155–166.
[28] Zhiyu Li, Shuai Lu, Daya Guo, Nan Duan, Shailesh Jannu, Grant Jenks, Deep

Majumder, Jared Green, Alexey Svyatkovskiy, Shengyu Fu, et al. 2022. CodeRe-
viewer: Pre-Training for Automating Code Review Activities. arXiv preprint

arXiv:2203.09095 (2022).
[29] Bo Lin, Shangwen Wang, Kui Liu, Xiaoguang Mao, and Tegawendé F Bissyandé.

2021. Automated Comment Update: How Far are We?. In International Conference

on Program Comprehension. 36–46.
[30] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer

Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A
robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692
(2019).

[31] Zhongxin Liu, Xin Xia, David Lo, Meng Yan, and Shanping Li. 2021. Just-In-
Time Obsolete Comment Detection and Update. IEEE Transactions on Software

Engineering (2021).
[32] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambro-

sio Blanco, Colin Clement, Dawn Drain, Daxin Jiang, Duyu Tang, et al. 2021.
CodeXGLUE: A Machine Learning Benchmark Dataset for Code Understanding
and Generation. arXiv preprint arXiv:2102.04664 (2021).

[33] Lara Martin, Prithviraj Ammanabrolu, Xinyu Wang, William Hancock, Shruti
Singh, Brent Harrison, and Mark Riedl. 2018. Event representations for auto-
mated story generation with deep neural nets. In AAAI Conference on Artificial

Intelligence. 868–875.
[34] Antonio Mastropaolo, Simone Scalabrino, Nathan Cooper, David Nader Palacio,

Denys Poshyvanyk, Rocco Oliveto, and Gabriele Bavota. 2021. Studying the usage
of text-to-text transfer transformer to support code-related tasks. In International

Conference on Software Engineering. 336–347.
[35] Courtney Napoles, Keisuke Sakaguchi, Matt Post, and Joel Tetreault. 2015. Ground

truth for grammatical error correction metrics. In Annual Meeting of the Associa-

tion for Computational Linguistics and International Joint Conference on Natural

Language Processing. 588–593.
[36] Graham Neubig, Makoto Morishita, and Satoshi Nakamura. 2015. Neural Rerank-

ing Improves Subjective Quality of Machine Translation: NAIST at WAT2015. In
Workshop on Asian Translation. 35–41.

[37] Changan Niu, Chuanyi Li, Vincent Ng, Jidong Ge, Liguo Huang, and Bin Luo. 2022.
SPT-Code: Sequence-to-Sequence Pre-Training for Learning the Representation
of Source Code. In International Conference on Software Engineering. 2006–2018.

[38] Sheena Panthaplackel, Miltiadis Allamanis, and Marc Brockschmidt. 2021. Copy
that! editing sequences by copying spans. In AAAI Conference on Artificial Intelli-

gence. 13622–13630.
[39] Sheena Panthaplackel, Junyi Jessy Li, Milos Gligoric, and Raymond J Mooney.

2021. Deep just-in-time inconsistency detection between comments and source
code. In AAAI Conference on Artificial Intelligence. 427–435.

[40] Sheena Panthaplackel, Pengyu Nie, Milos Gligoric, Junyi Jessy Li, and Raymond
Mooney. 2020. Learning to Update Natural Language Comments Based on Code
Changes. In Annual Meeting of the Association for Computational Linguistics.
1853–1868.

[41] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. BLEU: a
method for automatic evaluation of machine translation. In Annual Meeting of

the Association for Computational Linguistics. 311–318.
[42] Karl Pichotta and Raymond Mooney. 2016. Learning statistical scripts with

LSTM recurrent neural networks. In AAAI Conference on Artificial Intelligence.
2800–2806.

[43] Alec Radford, JeffreyWu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever,
et al. 2019. Language models are unsupervised multitask learners. OpenAI blog 1
(2019), 9.

[44] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. 2020. Exploring the Limits
of Transfer Learning with a Unified Text-to-Text Transformer. Journal of Machine

Learning Research 21 (2020), 1–67.
[45] Ehud Reiter and Robert Dale. 1997. Building Applied Natural Language Genera-

tion Systems. Natural Language Engineering 3 (1997), 57–87.

ASE ’22, October 10–14, 2022, Rochester, MI, USA Jiyang Zhang, Sheena Panthaplackel, Pengyu Nie, Junyi Jessy Li, and Milos Gligoric

[46] Alexander M Rush, Sumit Chopra, and Jason Weston. 2015. A Neural Attention
Model for Abstractive Sentence Summarization. In Empirical Methods in Natural

Language Processing. 379–389.
[47] Daniel Tarlow, Subhodeep Moitra, Andrew Rice, Zimin Chen, Pierre-Antoine

Manzagol, Charles Sutton, and Edward Aftandilian. 2020. Learning to fix build
errors with graph2diff neural networks. In International Conference on Software

Engineering Workshops. 19–20.
[48] Michele Tufano, Jevgenija Pantiuchina, CodyWatson, Gabriele Bavota, and Denys

Poshyvanyk. 2019. On learning meaningful code changes via neural machine
translation. In International Conference on Software Engineering. 25–36.

[49] Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta, Martin
White, and Denys Poshyvanyk. 2019. An empirical study on learning bug-fixing
patches in the wild via neural machine translation. Transactions on Software

Engineering 28 (2019), 1–29.
[50] Rosalia Tufano, Simone Masiero, Antonio Mastropaolo, Luca Pascarella, Denys

Poshyvanyk, and Gabriele Bavota. 2022. Using Pre-Trained Models to Boost
Code Review Automation. In International Conference on Software Engineering.
2291–2302.

[51] Rosalia Tufano, Luca Pascarella, Michele Tufanoy, Denys Poshyvanykz, and
Gabriele Bavota. 2021. Towards Automating Code Review Activities. In Interna-

tional Conference on Software Engineering. 163–174.
[52] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Processing Systems. 5998–6008.

[53] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. 2015. Pointer networks.
Advances in Neural Information Processing Systems.

[54] XinWang, YashengWang, Fei Mi, Pingyi Zhou, YaoWan, Xiao Liu, Li Li, HaoWu,
Jin Liu, and Xin Jiang. 2021. SynCoBERT: Syntax-GuidedMulti-Modal Contrastive
Pre-Training for Code Representation. arXiv preprint arXiv:2108.04556 (2021).

[55] Yue Wang, Weishi Wang, Shafiq Joty, and Steven C.H. Hoi. 2021. CodeT5:
Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Under-
standing and Generation. In Empirical Methods in Natural Language Processing.
8696–8708.

[56] Wei Xu, Courtney Napoles, Ellie Pavlick, Quanze Chen, and Chris Callison-
Burch. 2016. Optimizing statistical machine translation for text simplification.
Transactions of the Association for Computational Linguistics 4 (2016), 401–415.

[57] Ziyu Yao, Frank F. Xu, Pengcheng Yin, Huan Sun, and Graham Neubig. 2021.
Learning Structural Edits via Incremental Tree Transformations. In International

Conference on Learning Representations.
[58] Pengcheng Yin and Graham Neubig. 2017. A Syntactic Neural Model for General-

Purpose Code Generation. In Annual Meeting of the Association for Computational

Linguistics. 440–450.
[59] Pengcheng Yin, Graham Neubig, Miltiadis Allamanis, Marc Brockschmidt, and

Alexander L Gaunt. 2018. Learning to Represent Edits. In International Conference

on Learning Representations.
[60] Qingyu Zhou, Nan Yang, Furu Wei, and Ming Zhou. 2018. Sequential copying

networks. In AAAI Conference on Artificial Intelligence. 4987–4994.
[61] Zhi-Hua Zhou and Ming Li. 2005. Tri-training: Exploiting unlabeled data using

three classifiers. Transactions on knowledge and Data Engineering 17 (2005),
1529–1541.

	Abstract
	1 Introduction
	2 Background
	2.1 Generation with Transformer-Based Models
	2.2 Large Pretrained Language Models
	2.3 Large Pretrained Language Models for Software Engineering

	3 CoditT5
	3.1 Pretraining Objective
	3.2 Pretraining Data
	3.3 Pretraining Setup

	4 Experimental Design
	4.1 Downstream Tasks
	4.2 Data for Downstream Tasks
	4.3 Baselines
	4.4 Evaluation Metrics

	5 Evaluation
	5.1 Comparing CoditT5 to Baselines
	5.2 Evaluating our Pretraining Objective
	5.3 Integrating CoditT5 and CodeT5

	6 Limitations
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

