
Pengyu Nie Research Statement

My main research area is the fusion of software engineering (SE) and natural language processing
(NLP), with a focus on improving developers’ productivity during software development, testing,
and maintenance. My research focuses on execution-guided learning for evolving software. Specif-
ically, it covers developing learning-based software engineering techniques that leverage software
execution [1, 2, 3, 4] and software evolution [5, 6, 7, 8, 9], as well as enhancing the utilization of
specifications (comments, code contracts, and tests) [10, 11, 12, 13, 14, 15, 16, 17].

I have published 12 refereed conference papers at top-tier conferences in software engineering
(FSE×2, ASE×2, ICSE, ISSTA, ICSEDemo), natural language processing (ACL×2), and pro-
gramming languages (OOPSLA×2, IJCAR). I have won an ACM SIGSOFT Distinguished Paper
Award (FSE’19) for my work on writing trigger-action comments in executable format [11]. My
research has resulted in novel techniques and many open-source tools (ten GitHub repositories) for
code and test completion, comment generation and maintenance, lemma naming, executable com-
ments, executable code contracts, and inline testing. My research has been motivated by real-world
SE challenges, which I observed by interacting with open-source and industry developers. During
my internships at Facebook, I combined my research with industrial SE needs and contributed to
several learning-based SE techniques used internally at the company.

1 Learning-Based Software Engineering

My research is among the first to develop learning-based software engineering techniques that
leverage code execution and are evolution-aware. The success of ML (machine learning) in NLP
motivated the applications ML on SE tasks to improve developers’ productivity. However, existing
ML solutions have limited effectiveness on SE tasks because of treating software as static natural
language text that does not execute or evolve. I identified two important aspects of software and
software development that must be taken into account to develop high-quality ML models. First,
unlike text, code can be executed, and ML models should integrate code execution into their design
and workflow. Second, software constantly evolves, and ML models should focus on editing and
not just on generation.

1.1 Learning with Code Execution

Developers heavily rely on execution to understand and write code during software development
and testing. However, existing ML models for SE rely on syntax-level representations of code. I
was the first to combine ML models with code execution to improve their performance tasks that
require deeper reasoning about code by leveraging runtime data, integrating execution into the
workflow, and improving the model architecture. My research in this direction targets applications
in domains where code execution is important, including testing, verification, and hardware design.

Test completion. Software testing is the most frequently-used technique in industry for check-
ing software correctness. A large part of testing requires manually writing tests which is time-
consuming. I developed TeCo [1] to aid developers in writing tests by completing the next state-
ment given the prior test code statements and the code under test. TeCo exploits code semantics
extracted from test execution results (e.g., local variable types) and execution context (e.g., last
executed method). Given the candidate next statements predicted by the ML model, TeCo reranks
them to prioritize the compilable and runnable candidates (which are likely functionally correct).
Compared to the best existing ML model, TeCo improves the accuracy of generating the same
developer-written next statement from 14% to 18%, and improves the chance of generating a
runnable next statement (which simplifies debugging the output) from 19% to 29%.
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Suggesting lemma names. Proof assistants are becoming popular for developing trustworthy
software systems (e.g., compilers and file systems). Code written in proof languages (e.g., Coq) is
difficult to understand, and thus using comprehensible names for lemmas is important. I developed
Roosterize [2] for suggesting lemma names in Coq. Roosterize executes the lemma to extract its
runtime representations from two phases of execution: syntax trees from the parsing phase and
kernel trees from the elaboration phase. They are used jointly with the lemma as inputs to the ML
model. Runtime representations contain more complete information (e.g., elaborated user-defined
notations and implicit terms) for generating accurate names. Roosterize is deployed as a Visual
Studio Code plugin [3]. A qualitative study conducted with a verification project maintainer found
that 25% of the names suggested by Roosterize were of good quality.

Statement completion for hardware descriptions. Hardware description languages (HDLs)
are used to describe the design of digital circuits in hardware. HDLs have unique syntax and
semantics compared to popular imperative languages (e.g., Java). For example, to handle the
parallelism inherent in hardware designs, the assignment statements are executed concurrently.
To leverage this unique feature, I developed a statement completion ML model for VHDL (one
of the most popular HDLs) where multiple prior assignment statements are concurrently used as
inputs [4]. Our ML model outperforms the baseline code completion ML models, improving the
accuracy from 14% to 19%.

1.2 Learning to Edit Software

Software constantly evolves to implement new features, fix bugs, improve documentation, etc.
Prior work considered applying ML models on a single version of the software and entirely ignored
valuable history readily available in repositories. The context from history is important for SE
techniques as developers perform updates rather than write things from scratch. I was the first to
study learning to edit software, initially on the task of updating code comments when code changes.
Later, I generalized our ML model to a pretrained one that can support more software editing tasks
and proposed a novel methodology for evaluating ML models.

Comment updating. Developers use API comments that accompany each method to document
the method’s intended behaviors and usages. Failure to co-evolve code and the associated API
comments lead to confusion and introduce software bugs. To automate the co-evolution of code
and comments, I developed an ML edit model for automatically updating a comment when its
associated code changes [5]. The edit model generates an edit sequence that can be applied on
the old comment to produce the new comment. Compared to existing ML models that generate
from scratch, our approach produces more accurate comments by keeping the style and relevant
information unchanged. Users accepted the outputs of our edit model (30%) more frequently than
a generation model (12%).

Evolution-aware pretraining. To generalize to other software editing tasks beyond comment up-
dating, I used the pretraining approach: train an ML model that leans to edit on a large dataset in
an unsupervised manner, where the learned knowledge is transferrable to many downstream tasks.
I developed the first pretrained ML model for code and natural language editing, CoditT5 [6]. To
pretrain the ML model, I proposed a novel pretraining objective of generating edit sequences to re-
cover random mutations mimicking developer edits. CoditT5 sets new state-of-the-art performance
on several software editing tasks, including comment updating, bug fixing, and automated code re-
view. For comment updating, CoditT5 improves the accuracy over our previous non-pretrained edit
ML model from 33% to 45%. For bug fixing and automated code review, where strong pretrained
generation ML models existed, CoditT5 also has 5–8% accuracy improvements.
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Evolution-aware methodology. Data and metrics used to evaluate ML models for code sum-
marization tasks ignored the order in which data was created in practice. To split the dataset into
training and testing sets, prior work adopted either the mixed-project methodology (mixes data
from all projects and then splits) or the cross-project methodology (splits data at the project level).
A natural continuous-mode use case of ML models requires that data in the training set be available
before data in the testing set, but the two existing methodologies are not evolution-aware and do
not match this use case. I proposed the time-segmented evaluation methodology [7] which splits
data based on timestamps and is evolution-aware. Our experiments found that prior approaches
either underestimate or overestimate the prediction accuracy of ML models, so the time-segmented
methodology should be used to evaluate ML models for evolving software.

2 Enhancing the Utilization of Specifications

Comments, code contracts, and tests form a large portion of software. I broadly define these code
and natural language elements as specifications because they are used to describe software behav-
iors and development needs. These specifications help communicate development tasks and check
software correctness, but their utilization has been limited due to the lack of formal connections
between specifications and production code. To reduce the cost of writing and maintaining specifi-
cations and improve their benefits in software development, I develop novel techniques and domain
specific languages to make specifications executable and easier to maintain.

Executable todo comments. Developers use todo comments to communicate future tasks and
development needs. Todo comments in open-source projects frequently become dangling (i.e.,
forgotten or irrelevant) [10]. I developed TrigIt [11] for writing and automatically maintaining
executable todo comments. TrigIt provides a domain specific language embedded in the host
language to specify tasks that need to be performed (actions) when specific conditions hold on
code-related artifacts (triggers). When a trigger evaluates to true, TrigIt executes the actions and
removes the comment. I migrated dozens of natural language todo comments in ten open-source
projects to executable todo comments, and reported six dangling todo comments found by using
TrigIt to execute those comments.

Unifying imperative code and declarative code contracts. Code contracts, including invari-
ants, pre-conditions, and post-conditions, are used to formally describe software behavior. They
are traditionally checked during executing production code and recently can be also executed alone
for mocking and prototyping. Code contracts are usually written in declarative languages different
from the mainstream imperative language, which can be hard to learn and use. I developed Deu-
terium [12] for writing and executing code contracts entirely in Java as a combination of imperative
and declarative code. Deuterium helps write type-safe code contracts and speeds up the execution
of code contracts by utilizing their imperative parts.

Inline testing. Existing testing frameworks target unit-level (i.e., a single method), which is
ill-suited for testing individual statements. Previous studies showed that single-statement bugs
are common and often missed by unit tests. I proposed a novel granularity of testing, inline
testing [13, 14], for checking the correctness of individual statements. Inline testing supplements
existing unit testing to provide more confidence that software is correct. The inline tests we wrote
for 100 statements in open-source projects helped find two bugs not covered by unit tests. Because
inline tests are written next to the statement under test, they are easier to co-evolve with code.
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3 Future Directions

In the short term, I will focus on improving learning-based SE techniques with software execution
and evolution. I will apply the improved techniques to more tasks, such as test generation based on
bug reports, and more domains, such as to support the development of ML code. In the long term,
I will design the future ML-assisted software development workflow with the help of specifications.

Learning from evolving code execution data. I will combine learning from execution and
learning to evolve with the goal of developing high-quality ML models that understand code se-
mantics. One possible combination is to consider the diff of execution data when software evolves,
which may be more informative than the diff of code itself. Another possible combination is to
consider the evolution of the program state when code executes, because execution data (e.g., run-
time values) can be too large to be used by ML models, but the delta execution data (e.g., runtime
values changed during execution) is more succinct. I will leverage these new sources of data in
large-scale pretraining, which has promising potential in building high-quality ML models for code
(e.g., Codex, AlphaCode). Obtaining large-scale software execution and evolution dataset for pre-
training is challenging, which I will tackle by augmenting real-world software data via mutation
and generating synthetic data based on programming languages’ grammars.

Learning to generate bug-revealing tests. Having bug-revealing tests that expose software
bugs is a prerequisite for fixing bugs (either manually or using automated program repair tech-
niques), but writing such tests can be challenging especially under the pressure of fixing bugs in
a short time (e.g., bugs in deployed software). I propose to develop a learning-based technique to
help generate bug-revealing tests given the bug report and code under test. The technique will
extract test inputs and oracles from the bug report and leverage test execution to refine the inputs
and oracles. For software with existing tests, the technique will learn to reuse an existing test with
edited inputs and oracles instead of always generating from scratch.

Learning-based SE for ML. The amount of code for ML frameworks and algorithms is rapidly
growing, but SE support for ML is lacking. For instance, many ML projects are not well-documented
or tested. Despite being written in popular programming languages (e.g., Python), ML code uses
specialized “dialects” for unique features like tensor operations and optimized training. Thus, exist-
ing (learning-based) SE techniques are ill-suited for ML code. I propose to develop learning-based
SE techniques adapted for ML code, to (1) generate and maintain comments for ML code, leverag-
ing the external knowledge of the research papers accompanying the code; (2) generate tests for ML
code to check correctness, robustness, and runtime performance, leveraging the execution (training
and inference) of ML models.

ML-Assisted Software Development Workflow. Current software development relies on de-
velopers to design, implement, and maintain code, but a new software development workflow is
needed in the next few years when learning-based techniques become accurate enough to automate
some parts of the workflow, e.g., implementing code. I propose that specifications, including com-
ments, code contracts, and tests, should be the interface between developers and ML models. For
example, in the initial stages of software development, ML models can generate code with specifi-
cations given the high-level requirements provided by developers. Then, developers can modify the
specifications, and ML models should update the code accordingly. Towards this direction, I will
iteratively design better formats of specifications, develop learning-based techniques for the specifi-
cations, and deploy the techniques in real-world software development workflow to collect feedback.
The design of specifications will consider the concerns from both developers’ perspectives (e.g.,
being executable and concise) and ML models’ perspectives (e.g., correlation with code).
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